Programmer's Guide

HP 71450B/1B/2B Optical Spectrum Analyzers HP Part No. 70950-90050 Edition 1 Printed in USA June 1995

1400 Fountaingrove Parkway, Santa Rosa, CA 95403-1799, USA

Notice. The information contained in this document is subject to change without notice. Hewlett-Packard makes no warranty of any kind with regard to this material, including but not limited to, the implied warranties of merchantability and fitness for a particular purpose. Hewlett-Packard shall not be liable for errors contained herein or for incidental or consequential damages in connection with the furnishing, performance, or use of this material.

Restricted Rights Legend. Use, duplication, or disclosure by the U.S. Government is subject to restrictions as set forth in subparagraph (c) (1) (ii) of the Rights in Technical Data and Computer Software clause at DFARS 252.227-7013 for DOD agencies, and subparagraphs (c) (1) and (c) (2) of the Commercial Computer Software Restricted Rights clause at FAR 52.227-19 for other agencies.

© Copyright Hewlett-Packard Company 1995 All Rights Reserved. Reproduction, adaptation, or translation without prior written permission is prohibited, except as allowed under the copyright laws.

Remote operation with HP 71450B/1B/2B

This introduction provides you with a quick overview of some basic concepts you will need to successfully program the HP 71450B/1B/2B optical spectrum analyzer (OSA). The OSA offers extensive remote programming capability which includes the following features:

- Setting measurement ranges
- Querying values to the computer
- Creating new functions
- Creating user-defined variables and trace arrays
- Processing information with math and move commands
- Activating new functions with front-panel keys
- Allowing front-panel control during remote operation
- Placing graphics and text on the screen
- Monitoring instrument operation by returning a status byte to the computer

Start here

- 1. Finish reading this introduction and learn what areas of basic programming control are covered in this manual.
- Read Chapter 1, "Learning the Basics" to connect the computer to the OSA.

The OSA module should arrive installed in the display mainframe as described in the HP 71450B/1B/2B Optical Spectrum Analyzer Installation and Verification Manual.

- 3. Read the remaining chapters to learn specific details about remote programming.
- 4. Chapter 7, "Language Reference" documents each OSA command in alphabetical order.
- Chapter 8, "Tables and Charts" contains additional information related to programming the OSA. Functional groups of programming commands with softkey cross-references are also provided.

Computer Model in Examples

The programming examples provided in this book used an HP 9000 Series 300 technical computer and the HP-BASIC language. However, you can use other computers and languages with OSA commands and query data over HP-IB.

As an example, you could use an HP Vectra PC compatible computer. Simply install an HP 82335A HP-IB Interface and Command Library card in the PC and use a compatible language such as Microsoft QuickC.

Local and Remote Control Indicators

Whenever the analyzer is addressed via HP-IB, the (MENU) and (USER) keys are disabled. The front-panel LEDs indicate the following:

- RMT indicates remote HP-IB control.
- LSN indicates information received via HP-IB.
- TLK indicates information sent via HP-IB to computer.
- SRQ indicates the OSA is requesting computer attention.

Designing Programs

OSA programs are composed of commands that correspond to front-panel keys. Except for timing considerations, remote operation is very similar to manual operation. To design a program, use the following procedure:

- 1. Note the order of keystrokes used to perform an OSA measurement.
- 2. Identify which commands correspond with the keystrokes used. Refer to the functional group tables of commands in Chapter 8, "Tables and Charts."
- 3. Incorporate the commands into output statements.

Default HP:1B Addresses

Typically, you will program the OSA using the factory default HP-IB addresses provided in the following table. If you want to change these addresses, refer to Chapter 1, "Learning the Basics."

Default HP-IB Addresses

MMS unit	Address
HP 70950B/1B/2B OSA module	23
HP 70004A Display	4

Safety Notes

The following safety notes are used throughout this manual. Familiarize yourself with each of the notes and its meaning before operating this instrument.

CAUTION

The *caution* note denotes a hazard. It calls attention to a procedure which, if not correctly performed or adhered to, could result in damage to or destruction of the instrument. Do not proceed beyond a *caution* note until the indicated conditions are fully understood and met.

WARNING

The *warning* note denotes a hazard. It calls attention to a procedure which, if not correctly performed or adhered to, could result in injury or loss of life. Do not proceed beyond a *warning* note until the indicated conditions are fully understood and met.

Instruction Manual The **instruction manual** symbol. The product is marked with this symbol when it is necessary for the user to refer to the instructions in the manual.

General Safety Considerations

WARNING	Before this instrument is switched on, make sure it has been properly grounded through the protective conductor of the ac power cable to a socket outlet provided with protective earth contact.
	Any interruption of the protective (grounding) conductor, inside or outside the instrument, or disconnection of the protective earth terminal can result in personal injury.
WARNING	There are many points in the instrument which can, if contacted, cause personal injury. Be extremely careful.
	Any adjustments or service procedures that require operation of the instrument with protective covers removed should be performed only by trained service personnel.
CAUTION	Before this instrument is switched on, make sure its primary power circuitry has been adapted to the voltage of the ac power source.
	Failure to set the ac power input to the correct voltage could cause damage to the instrument when the ac power cable is plugged in.

Certification

Hewlett-Packard Company certifies that this product met its published specifications at the time of shipment from the factory. Hewlett-Packard further certifies that its calibration measurements are traceable to the United States National Institute of Standards and Technology, to the extent allowed by the Institute's calibration facility, and to the calibration facilities of other International Standards Organization members.

Regulatory Information The specifications and characteristics chapter contains regulatory information.

Warranty

This Hewlett-Packard instrument product is warranted against defects in material and workmanship for a period of one year from date of shipment. During the warranty period, Hewlett-Packard Company will, at its option, either repair or replace products which prove to be defective.

For warranty service or repair, this product must be returned to a service facility designated by Hewlett-Packard. Buyer shall prepay shipping charges to Hewlett-Packard and Hewlett-Packard shall pay shipping charges to return the product to Buyer. However, Buyer shall pay all shipping charges, duties, and taxes for products returned to Hewlett-Packard from another country.

Hewlett-Packard warrants that its software and firmware designated by Hewlett-Packard for use with an instrument will execute its programming instructions when properly installed on that instrument. Hewlett-Packard does not warrant that the operation of the instrument, or software, or firmware will be uninterrupted or error-free.

LIMITATION OF WARRANTY

The foregoing warranty shall not apply to defects resulting from improper or inadequate maintenance by Buyer, Buyer-supplied software or interfacing, unauthorized modification or misuse, operation outside of the environmental specifications for the product, or improper site preparation or maintenance.

NO OTHER WARRANTY IS EXPRESSED OR IMPLIED. HEWLETT-PACKARD SPECIFICALLY DISCLAIMS THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.

EXCLUSIVE REMEDIES

THE REMEDIES PROVIDED HEREIN ARE BUYER'S SOLE AND EXCLUSIVE REMEDIES. HEWLETT-PACKARD SHALL NOT BE LIABLE FOR ANY DIRECT, INDIRECT, SPECIAL, INCIDENTAL, OR CONSEQUENTIAL DAMAGES, WHETHER BASED ON CONTRACT, TORT, OR ANY OTHER LEGAL THEORY.

Assistance

Product maintenance agreements and other customer assistance agreements are available for Hewlett-Packard products.

For any assistance, contact your nearest Hewlett-Packard Sales and Service Office.

Typesetting Conventions

(Front-Panel Key) This represents a key physically located on the instrument.

Softkey This indicates a "softkey," a key whose label is determined

by the instrument's firmware.

Screen Text This indicates text displayed on the instrument's screen.

Contents

1.	Learning the Basics
	Preparing the OSA
	To prepare the OSA
	To change the HP-IB address using switches 1
	To change the HP-IB address from the front panel 1
	Beginning Your Program
	To initialize the bus and the OSA 1-1
	Sending Commands 1-1
	To send commands to the OSA 1-1
	Returning Data to the Computer 1-
	To query a value
	Using Commands as Arguments 1-
	To use a command argument 1-1
	Using the MOV Command 1-1
	Controlling Program Timing 1-1
	Entering Data from the Front Panel 1-2
	To allow front-panel data entry
	Controlling Advanced Measurement Programs 1-2
	Making advanced measurements over HP-IB 1-2
2.	Using Variables and Traces
	Defining Variables
	To create a user-defined variable
	To erase a user-defined variable
	Defining Traces
	To create a user-defined trace
	To erase a user-defined trace
	Using Amplitude Data
	To select the amplitude units
	To convert measurement and parameter units 2
	To return wavelength and position values
	Formatting Trace-Data Output
	Using Math and Move Commands 2-1
	Trace Math Rule 1
	Trace Math Rule 2
	Trace Math Rule 3

	Trace Math Rule 4	2-19
3.	Controlling Memory	
	Saving and Recalling Items	3-4
	To select user memory	3-6
	To catalog memory	3-6
	To save a file	3-6
	To recall a file	3-6
	Erasing Memory	3-7
	To erase files	3-9
	To erase all memory except correction factors and	
	serial-number	3-9
	To erase all memory for security	3-9
	Protecting Memory	3-10
	To protect files from erasure	3-10
	Freeing Memory	3-12
	To free the greatest amount of internal memory	3-13
	To reduce the size of user-defined functions	3-13
4.	Monitoring System Operation	
	Monitoring System Operation	4-4
	Interrupt Process	4-5
	Analyzer Status-Byte Register	4-5
	Service-Request Mask	4-6
	Service-Request Examples	4-7
	Monitoring System Operation Without Using Service	
	Requests	4-11
	Debugging Programs	4-12
	To debug a program	4-12
5 .	Creating Graphics	
	Clearing the Display	5-4
	To clear the display	5-4
	Creating Graphics	5-5
	To create a drawing	5-9
	Drawing Grids	5-10
	Drawing Graphics Items	5-11
	To use a graphics item	5-15
	To delete a graphics item	5-15
	Displaying Text	5-16
	To display text	5-19

	To erase text				5-19
	Displaying Variables				5-20
	To display a variable				5-20
	To erase displayed variables				5-20
	Changing the Scale				5-21
	Using Graphics Windows				5-24
	To reduce the display area				5-27
	To create a graphics window				5-27
	To place a trace in a window				5-27
6.	Creating Downloadable Programs				
	Creating a Downloadable Program				6-4
	To store a function				6-7
	To confirm a function is stored				6-7
	Creating an Active User-Defined Function				6-8
	Branching, Looping, and Interrupting				6-9
	To use a conditional branch				6-10
	To use a looping construct				6-11
	To abort loops and user-defined functions				6-11
	Executing User-Defined Functions				6-12
	To assign a function to the USER menu				6-12
	To execute a function via computer				6-13
	To execute a function via front-panel keys				6-13
	Building USER Menus				6-14
	To assign a function to the (USER) menu				6-17
	To build interactive menus				6-17
	Avoiding Illegal Recursion				6-18
	Controlling Instruments Over HP-IB				6-19
	To control instruments over HP-IB				6-20
7.	Language Reference				
	ABORT				7-7
	ABS				7-9
	ACTDEF				7-11
	ACTPARM				7-17
	ADAPBTL				7-18
	ADAPBPCTL				7-20
	ADBTL				7-22
	ADCTL				7-24
	ADCTRG				7-26
	ADCTRGDLY				7-29

ADCTRGSYN											7-31
ADD								 			7 - 32
ALIGN ALIGNPRST											7 - 34
ALIGNPRST											7-37
AMB AMBMC											7-38
AMBMC											7 - 39
AMBMCPL											7-40
AMBPL											7 - 41
AMC											7-43
AMCPL											7-44
AMETER .											7-45
AMPCOR .											7-46
AMPMKR .											7-48
AMPU											7 - 49
ANNOFF .											7-53
ANNOT											7-54
APB											7-55
APBDCTL .											7-56
AUNITS											7-58
AUTOALIGN											7-60
AUTOMDB											7 - 61
AUTOMEAS											7-62
AUTOMMKR											7-63
AUTOMOPT											7-64
AUTOMSP .											7-65
AUTORNG											7-66
AVG											7-67
AXB											7-69
AXC											7-70
BIT											7-71
BLANK											7-73
BML											7-74
BP											7-75
BTC											7-76
BXC											7-77
CAL		•									7-78
CALCOR .											7-80
CALDATA .											7-82
CALPWR .											7-84
CALWL											7-86
CATALOG											7-88

CENTERWL																					7-92
CHEIGHT																					7-94
CHOP	•	•	•	•	•	•	•	•			•	•	•	•	•	•	•	•			7-95
CLRDSP	•	•	•	•	٠	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	7-96
CLRW																					7-97
CLS																					7-98
COMPRESS	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	7-99
CONCAT .	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	7-101
CONFIG	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	7-101
CONTIG																					7-103
CORSEL																					7-104
CORTOLIM																					7-105
CWIDTH .																					7-107
DEBUG	•	٠	•	•	٠	٠	•	•	•	•	•	٠	•	•	•	•	٠	•	٠	•	7-108
DELETE	•	•	٠	•	٠	٠	•	٠	٠	•	•	٠	•	•	•	•	٠	•	•	•	7-110
DFB DISPOSE .	•	٠	•	•	٠	٠	•	•	٠	٠	•	٠	٠	•	٠	•	٠	•	•	•	7-111
																					7-113
DISPU																					7-116
DIV																					7-117
DL																					7-119
DONE																					7-121
DSPLY																					7-122
DSPMODE .																					7-124
DSPTEXT .																					7-126
DWINDOW																					7-128
ENTER																					7-131
ERASE																					7-133
ERR																					7-134
EXP																					7-135
FETCH																					7-137
FFT																					7-138
FFTKNL																					7-143
FORMAT .																					7-144
FP_{-}																					7-145
FP_MKBW																					7-147
FP_TH																					7-148
FS																					7-149
FUNCDEF .	•			•	•		•		•								•			•	7-150
GATESWP .	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	7-153
GRAPH																					7-155
GRAT	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	7-157

GRATORDER																				7-158
GRATSCRL																				7-160
GRID																				7-161
HD																				7-163
																				7-164
IF/THEN .																				7-165
IGEN																				7-167
IGENDTYCY																				7-169
IGENLIMIT																				7-171
IGENPW .																				7-173
																				7-175
INT																				7-178
IP																				7-180
																				7-183
																				7-186
																				7-187
KEYDEF .																				7-188
																				7-192
																				7-193
LG																				7-195
LIGHT																				7-196
																				7-197
LIMIBEEP .																				7-198
LIMIBOT .																				7-199
LIMIDEL .																				7-200
LIMIDONE																				7-201
LIMIEDIT .																				7-202
LIMIFAIL .																				7-203
LIMIHALF .																				7-205
LIMILINE .																				7-206
LIMINEXT .																				7-208
LIMIRCL .																				7-209
LIMIREL .																				7-210
LIMISAV																				7-211
LIMISCRL .																				7-212
LIMISDEL .																				7-213
LIMISEG .																				7-214
LIMITEST .																				7-216
LIMITYPE .																				7-219
LIMIWL																				7-221
LIMTOCOR	•	•	•	•	٠	•	•	•	•	-	•	-	•	-	•	•	•	-	-	7-223

LINES																						7-224
LINET																						7-225
LN																						7-226
LOAD																						7-227
LOG																						7-230
																						7-232
																						7-235
																					_	7-237
MEASURE																						7-243
MEM																						7-245
																						7-247
																						7-249
																						7-250
																					•	7-252
MKACT .																					•	7-254
MKAL	•	•	•	•	•	•	٠	•	•	•	•	•	•	•	•	•	•	•	•	•	•	7-256
																						7-258
																						7-260
MKBWA .																						7-262
																					•	7-264
MKCWL .	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	7-265
MKOWE.																						7-266
MKDACT?																						7-268
MKDREFA																						7-269
																						7-209
MKDREFF																						
																						7-273
MKN																						7-274
																						7-276
MKOFF .																						7-278
MKP																						7-279
MKPABS								٠														7-281
																					•	7-283
MKPITX .		٠	٠	٠		٠		•	•		٠		٠	٠	٠	٠	٠	•				7-285
MKPK																						7-287
MKPX																						7-289
																						7-291
MKRL																						7-293
																						7-294
																						7-295
MKSTOP																						7-296
MKT																						7 207

MKTRACE																					7 - 299
MKTRACK																					7-300
MKTUNE .																					7-301
MKTV																					7-303
MKTYPE .																					7-305
MKWL																					7-307
MOD																					7-309
MODADD .																					7-311
MODID																					7-313
MOV																					7-316
MPY																					7-318
MSG																					7-320
MSI																					7-322
MXM																					7-324
MXMH	•	•	•		•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	7-326
NORM	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	7-327
NSTATE																					7-329
ONEOS																					7-331
ONMENU .																					7-333
ONMEN	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	7-335
ONUSER .	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	7-337
ONWINDOW	•	•	•	•	•	•	•	•	•	٠	•	•	•	•	•	•	•	•	•	•	7-339
OP																					7-341
OPTSW																					7-341
OR																					7-342
OUTPUT .	•	•	•	•	•	•	•	•	•	٠	•	•	•	•	•	•	•	•	٠	•	7-345
																					7-348
OVRW	•	•	•	•	٠	٠	•	٠	•	٠	٠	•	•	•	٠	•	•	•	٠	•	7-348
PAUSE	•	•	•	٠	٠	٠	•	•	•	•	٠	•	•	•	٠	٠	•	•	٠	•	
																					7-351
· · · · ·																					7-352
PDA																					7-353
							٠														7-356
PDLCALC .	•	•	٠	•	٠	•		٠	•	٠	•	•	٠	•	٠	•	٠	٠	٠	•	7-358
																					7-359
																					7-360
							٠														7-361
																					7-362
							٠														7-363
$PDL_REV?$.																					7-364
PDLSCALE				•																	7-365
DDICEC																					7 267

PDL_SRC?	7-369
PDMEAS	7-370
PDWL	7-372
PDWL	7-374
PEN	7-378
PERASE	7-380
PERSIST	7-382
PLOT	7-383
POSU	7-385
POWERON	7-389
PR	7-390
PREFX	7-392
PROTECT	7-394
PSTATE	7-398
PU	7-399
PURGE	7-400
PWRBW	7-401
RB	7-405
RBR	7-407
RCLD	7-408
RCLS	7-410
RCLT	7-411
RCLU	7-412
READMENU	7-413
RELHPIB	7-415
REPEAT/ UNTIL	7-416
DETIDN	7-418
RETURN	7-410
RL	7-420
RLPOS	7-421 $7-423$
	7-423
RMS	7-424
RUFFSE1	
RQS	7-427
SAVED	7-429
SAVES	7-431
SAVET	7-433
SAVEU	7-434
SCALE	7-435
SENS	7-438
SER	7-440
SMOOTH	7-441

SNGLS																				7-443
SP																				7 - 444
$SQR \dots \dots$																				7 - 446
SQR SRINPUT																				7 - 448
$SRQ \dots \dots$																				7-449
SS																				7-451
ST																				7-453
STARTUP																				7-455
STARTWL																				7-457
STATE																				7-459
STB																				7-460
STDEV																				7-462
STOPWL																				7-464
STOR																				7-466
STORREF	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	7-469
SUB																				7-470
SUM	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	7-472
SUMSQR																				7-474
SWEEP SWPMODE? .	•	•	•	٠	٠	•	•	•	•	•	•	•	٠	•	٠	•	•	•	•	7-476
SWPMODE: .	•	•	•	٠	٠	•	•	•	•	•	•	٠	٠	•	٠	٠	•	•	•	7-477
TDF	•	•		٠		•		•						•	•		•	٠		7-478
TEST																				7-481
TEXT																				7 - 482
TH																				7 - 484
THREED																				7 - 486
THREEDH																				7-488
THREEDV																				7-490
TIME					_		_													7-492
TITLE																				7-493
TM																				7-495
																				7-497
TP TRA/TRB/TRO	٠,	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	7-499
TRCOND	,	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	7-503
TRDEF	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	7-505
	•	•	•	٠	٠	•	•	•	•	•	•	•	٠	•	٠	•	•	•	•	7-508
TRNSZLOCK																				7-509
TRPST	٠	٠	٠	٠	•	•	٠	•	•	•	•	•	•	•	•	٠	•	•	•	7-510
TRSTAT																				7-511
TS																				7-513
TWNDOW																				7-514
USERERR																				7-517

USERKEY .																				7-518
USERLOCK .																				7-520
USERMSG .																				7-521
USERWARN																				7-522
USTATE																				7-524
VARDEF																				7-526
VARIANCE																				7-528
VAVG																				7-530
VB																				7-532
VIEW																				7-534
$VTDL \dots$																				7-535
VTH																				7-537
$VTL \dots$																				7-539
VW																				7-541
WAIT																				7-542
	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	7-543
WARNCTRL																				7-545
WLLIMIT .																				7-546
WLMKRL .																				7-547
WLMKRR .																				7-548
WLOFFSET																				7-549
WLUNITS .																				7-551
XAMPSW .																				7-555
XCH																				7-556
XERR																				7-558
XWARN																				7-559
ZERO																				7-561
ZOOMDD																				D FCC

8. Tables and Charts

Index

Contents

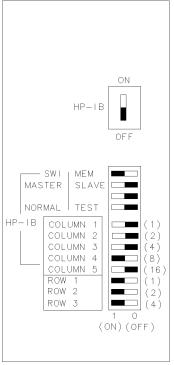
1

Learning the Basics

Learning the Basics

This chapter contains basic, remote program information, for the operation of an optical spectrum analyzer. In addition to learning how to send commands and receive data, you can learn about a debugging feature for locating programming errors.

Contents


Preparing the OSA	1-4
To prepare the OSA	1-7
To change the HP-IB address using switches	
To change the HP-IB address from the front panel	1-9
Beginning Your Program	1-10
To initialize the bus and the OSA	1-10
Sending Commands	1-11
To send commands to the OSA	1-13
Returning Data to the Computer	1-14
To query a value	1-16
Using Commands as Arguments	1-17
To use a command argument	1-17
Using the MOV Command	1-18
Controlling Program Timing	1-19
Entering Data from the Front Panel	1-21
To allow front-panel data entry	1-21
Controlling Advanced Measurement Programs	
Making advanced measurements over HP-IB	1-22

Preparing the OSA

When preparing the OSA for programming, you must connect the HP-IB cables, confirm the HP-IB address, and reset all instruments connected to the bus.

Typically, you will use the default address setting provided in the introduction of this book. However, the OSA's HP-IB address can be changed using front-panel keys or manually by changing SWITCHES\MEMORY on the HP 70950B/1B/2B module. The switches are located on the module cover.

In the illustration below, the rectangles are half-black (off position) and half-white (on position).

HP 70950A/70951A

```
SWITCH SETTINGS SHOWN: COLUMN ADDRESS 23 = 1 + 2 + 4 + 0 + 16 ROW ADDRESS 0 = 0 + 0 + 0 HP-IB=ON
```

ckb1

OSA Address Switches

In this figure, switches ROW 1, ROW 2, and ROW 3 correspond to row-address numbers which position the module vertically in the address map. The row switches for the optical spectrum module address must be set to 0 to allow HP-IB control.

The COLUMN switches select the HP-IB address and correspond to the column-address numbers on the address map. Next to each switch are numbers in parentheses which indicate the binary value of the individual switches. The column or row address is the sum of the values in the parentheses beside each switch that is set to 1. For example, a column

Preparing the OSA

address of 23 is selected by setting column switches 1, 2, 3, and 5 to 1, and setting column switch 4 to 0. (23 = 1 + 2 + 4 + 0 + 16.)

Illegal Addresses

HP-IB address 31 and HP-MSIB address 0, 31 are illegal and cannot be used.

Set the following OSA module switches to the settings shown in the following list:

HP-IBONSWITCHES/MEMORYMEMORYMASTER/SLAVEMASTERNORMAL/TESTNORMAL
On the display mainframe or module, three switches should be set as follows:
SYSTEM CONTROLLER 0 (OFF) TALK ONLY 0 (OFF)
TEST MODE

For a complete discussion of switch settings, refer to the HP 71450B/1B/2B Optical Spectrum Analyzer Installation and Verification Manual.

To prepare the OSA

1. Connect an HP-IB cable between the computer's HP-IB connector and the HP-IB connector on the HP 70000 modular measurement system's rear panel.

HP 70950B/1B/2B OSA modules do not have an HP-IB connector. Use the connector that is located on the mainframe in which the module is installed. Be careful not to confuse the display or mainframe's HP-IB connector with any connectors that may be present on the rear panel of any modules in the HP 70000 modular measurement system.

- 2. On the OSA, press (DISPLAY), and then press Address Map.
- 3. Turn the front-panel knob until the OSA module appears in the address map.

The HP-IB address is identical to the address map column where the module is listed. The OSA must be shown in row 0 of the map.

- 4. Ensure that the SYSTEM CONTROLLER switch on the HP 70004A display (or HP 70205 or HP 70206 display modules) is set to 0 (OFF).
- 5. Reset all instruments connected to the bus by turning the line power off and then on again.

Most peripherals like plotters or printers are reset by pressing a reset key. If you are not sure how to reset a device, cycle its power off, then on, to reset it.

To change the HP-IB address using switches

The HP-IB address is forced to the switch address setting when the OSA module SWITCHES/MEMORY selector is set to SWITCHES.

NOTE

The SWITCHES setting must be selected. The MEMORY setting is the factory default setting.

- 1. Turn off any line-power, and remove the HP 70950B/1B/2B module from the mainframe.
- 2. Locate the switches on the top of the module.
- 3. Set the SWITCHES/MEMORY selector to the SWITCHES position.
- 4. Be sure the three switches labeled ROW 1, ROW 2, and ROW 3 are set to 0 (OFF).
- 5. Set the five COLUMN switches so that their added values (as indicated by the numbers in parenthesis) add up to the HP-IB value that you want.

For example, to set the switches for address 23, set switches COLUMN 1, 2, 3, and COLUMN 5 to 1 (ON).

To change the HP-IB address from the front panel

The HP-IB address can be changed at the front panel when the OSA module's SWITCHES/MEMORY switch is set to MEM. (This is the default factory setting.)

- 1. Press (DISPLAY), Address Map.
- 2. With the front-panel knob, position the box around the OSA module, then press HP-IB ADDRSET.
- 3. Enter the HP-IB address using the front-panel numeric keypad, then press ENTER.

The current HP-IB address is shown inside the OSA module box on the address map. Changing the HP-IB address from the front-panel does not affect the HP-MSIB address of the module.

Beginning Your Program

Programs should begin with system-level and OSA commands that initialize the system. Three such commands are discussed here: CLEAR, IP, and CLRDSP.

The CLEAR command is an HP BASIC command that resets a device on HP-IB to a known state. As an example, CLEAR 723 clears the device (the OSA in this case) at address 23 on interface 7. CLEAR erases the OSA's input buffer, interrupts most incomplete operations, and prepares the OSA to receive instructions.

The instrument-preset command, IP, sets all of the analog parameters of the OSA to a known state and provides a good starting point for all measurement processes. Refer to IP in Chapter 7, "Language Reference" for complete information on the IP command.

The CLRDSP command clears any graphics from the display screen. Because CLRDSP also erases stored graphics from memory, such as an item or a graphics window, execute CLRDSP discriminately. Chapter 5, "Creating Graphics," gives more information about initializing the analyzer display for graphic presentations.

To initialize the bus and the OSA

• Place the following commands at the start of your program.

10 CLEAR 723 Initialize the bus.
20 OUTPUT 723; "IP;" Initialize the OSA.

30 OUTPUT 723; "CLRDSP;" Clears any user graphics.

Sending Commands

The commands listed in Chapter 7 are sent to the OSA as ASCII strings. The method used depends on the programming language and environment. The examples in this book use the HP-BASIC language with an HP 9000 Series 300 technical computer. Using HP-BASIC, the following example shows an output statement to send a command to the OSA:

```
10 OUTPUT 723; "CENTERWL 1300NM;" Set the center wavelength.
```

Be sure to place a semicolon between commands and at the end of any command string.

Using an HP Vectra computer with the HP-IB Interface and Command Library (and programming in *C*), the same command could be sent as follows:

```
IOOUTPUTS(723L, "CENTERWL 1300NM; ", 15);
```

Most analyzer commands first activate a function, then enter a number followed by a units code and a command terminator:

	OUTPUT723;"CENTERWL	800NM;"
Activate center wavelength		
Space recommended by syntax —		
Number (data entry)		
Units code —		
Command terminator —		
		XXXX ckb2

The number within the quote field must be a string of decimal numbers plus an optional decimal point and may be preceded by a minus or plus sign. Either fixed- or floating-point notation may be used. For example, "12.3E3", "1.23E4", and "12300" each enter the same number. A units code follows a data entry.

Sending Commands

Units Codes

	Units	Code
Wavelength	Meters	M
	Millimeters	MM
	Micrometer	UM
	Nanometer	NM
	Angstrom	AN G
	Picometer	PM
Time	Second	S
	Millisecond	MS
	Microsecond	US
Current	Ampere	Α
	Milliampere	MA
	Microampere	UA
Ratio Measurements	Decibel	DB
Power	Watt	W
	Milliwatt	MW
	Micro watt	UW
	Nanowatt	NW
	Pico watt	PW
Decibels relative to units.	1 Milliwatt dBm	DBM

To send commands to the OSA

- 1. Locate the appropriate commands in Chapter 7.
- 2. Construct a ASCII string of the commands, placing a semicolon between each command in the string.
- 3. Use your programming language's output statement to send the command string to the address of the OSA.

Returning Data to the Computer

Data is requested from the OSA using a query. Queries usually take the form of a command with the question-mark character. For example, CENTERWL? requests the OSA's center wavelength setting. The syntax diagrams in Chapter 7 document available command queries. Most command queries and variable queries are normally sent in the form of ASCII strings. However, binary query results are returned for some commands. It is your responsibility to allocate memory for returned values in your application.

The OSA returns information as decimal values in the units shown in the following table. Units are determined by the settings of the reference level (RL) for some functions, such as the marker, the scale (LN, LG), or the amplitude units (MKREAD, AUNITS).

Parameter Units

Measured Data	Fundamental Unit
Current	Ampere
Frequency	Hertz
Power	d Bm
Ratio	dB
Time	Second
Wavelength	Meters

Trace information that has been manipulated with math and move commands, or has been formatted with the MDS (measurement data size) or TDF (trace data format) command may be returned in other units. Refer to Chapter 2.

Trace information is returned two different ways, either indirectly with the use of markers, or directly as trace data with the TRA, TRB, or TRC commands. The next example marks trace A with a marker and returns the wavelength and amplitude values at the marker. Note that for every query executed, a value must be stored in the computer.

```
10 CLEAR 723
                                                                   Initialize analyzer.
20 OUTPUT 723; "IP; SNGLS; TS; "
30 OUTPUT 723; "CENTERWL 1300NM; SPANWL 10NM; RL -5DBM;"
                                                                   Set measurement range.
40 OUTPUT 723;"TS;"
                                                                   Sweep trace A.
50 OUTPUT 723; "MKPK HI; "
                                                                   Mark highest signal level.
60 OUTPUT 723; "MKWL?; "
                                                                   Return wavelenath at marker.
70 ENTER 723; W
                                                                   Assign wavelength to computer variable.
80 OUTPUT 723; "MKA?;"
                                                                   Return amplitude at marker.
90 ENTER 723; A
                                                                   Assign amplitude to computer variable.
100 \text{ W=W}/1.E-9
                                                                   Convert wavelength from meters to nanometers.
110 PRINT W, A
```

To return the amplitude of the 400th element of trace A, you would send the following:

To return the amplitude of all elements in trace A send the following commands:

```
30 DIM Array (1:800)

40 OUTPUT 723; "SNGLS; TS;;"

60 OUTPUT 723; "TRA?;

Return amplitude of points in trace A.

70 ENTER 723; Array(*)

Store trace amplitude values in a computer array.
```

The FETCH command returns the trace data for the currently active trace. Data is returned in binary while the sweep progresses. Use FETCH to speed data transfer and processing. Refer to Chapter 2 for more information on returning trace data.

Returning Data to the Computer

To query a value

- 1. Allocate a variable to hold the data returned by the query.
- 2. Use an output statement to send the query to the OSA.
- 3. Enter the returned data to the variable.

For example, to return the sensitivity setting, send SENS?.

OUTPUT 723; "SENS?"; " ENTER 723; S Send the sensitivity query string. Assign value to computer variable.

Using Commands as Arguments

Some OSA commands accept other commands as arguments. The following example shows the MKA command used as an argument for the MOV command.

```
10 OUTPUT 723; "MOV DL, MKA;"
```

The value of the command MKA is returned as input to the calling command, MOV. Commands that accept command arguments have syntax diagrams that show *predefined function* as an argument. Refer to Chapter 7. When using a command as an argument, the value returned is similar to the query value. Be sure the value returned is appropriate for the calling command. For example, the TRA command returns all the data in a trace, but TRA [50] returns the fiftieth element.

Do not follow the argument command with a ? or termination character. In the example shown above, the MOV moves the marker amplitude value into the predefined variable, DL. Notice that MKA is not terminated with a ? or termination character. The ending semicolon terminates the MOV command.

To use a command argument

- The calling command must list *predefined function* in its syntax diagram for the argument.
- Do not follow the argument command with a ? or termination character.

Using the MOV Command

It is recommended that the MOV command be used to execute all programming commands that load variables. Using the MOV command is faster and avoids displaying text on the analyzer screen. For example, send the following to set the reference level to $-10~\mathrm{dBm}$:

OUTPUT 723; "MOV RL, -10DBM;"

Controlling Program Timing

Most remote controlled measurements require control of the sweep. The TS (take sweep) command initiates a sweep when the trigger conditions are met. When TS is executed as part of a command sequence, the analyzer starts and completes one full sweep before the next analyzer command is executed. Use the SNGLS (single sweep) command to maintain absolute control over the sweep and to reduce execution time. Once SNGLS activates the single-sweep mode, TS can be used to initiate a sweep only when necessary.

Since many remote commands process trace information, updating trace information with TS becomes important whenever the input signal or measurement range changes. Use TS to update the trace *after* the analyzer settings or input signals change, but *before* the trace information is returned to the computer or processed by other commands, like trace math or marker commands.

When developing measurement algorithms with the front-panel controls, use the **SINGLE SWEEP** key to simulate the effect of the TS command updating the trace. The following examples demonstrates changing the measurement range. The trace data is not updated with the settings in line 30 until the TS command in line 40 is executed.

```
20 OUTPUT 723;"IP;SNGLS;TS;"

30 OUTPUT 723;"CENTERWL

1300NM;SPANWL 10NM;"

40 OUTPUT 723;"TS;"

Activate single sweep.

Change measurement range.

Measure with trace A.
```

Note that SNGLS cannot be substituted successfully for TS in all analyzer programs. In the following program, TS is executed *after* analyzer settings are changed, but *before* trace information is processed. If SNGLS were substituted for TS, SNGLS would initiate a sweep, but MKPK HI would be executed before the completion of the sweep.

```
30 OUTPUT 723; "CENTERWL 1300NM; SPANWL 10NM;"
40 OUTPUT 723; "TS;" Update trace.
50 OUTPUT 723; "MKPK HI;" Place marker on highest signal
```

There are two commands that change the measurement range indirectly, MKCWL and MKRL. They set the center wavelength and reference level equal to the marker wavelength and amplitude, respectively. If valid

Controlling Program Timing

trace information is needed, a TS command must be executed after these commands are executed. In all cases, executing TS invokes at least one entire sweep. However, TS invokes more than one sweep when certain commands are active, such as video averaging (VAVG) or marker tracking (MKTRACK).

Program timing can also be controlled with the RQS, DONE, and WAIT commands. The RQS command interrupts the computer operation when the analyzer has attained a predefined state. The DONE command allows the program to hold off the execution of subsequent commands until the OSA returns a "1" in response to the query. The WAIT command suspends program operation for a specified time. TS, RQS, and DONE are used often to synchronize data acquisition or the analyzer state with other events. The WAIT command, on the other hand, is used to improve human interface with the program. The program examples in this manual use WAIT to control the duration of displayed messages, or use WAIT to delay program execution to give you time to observe events on the display.

Entering Data from the Front Panel

Data may be entered from the front panel when the OSA is under remote control by using the EP (enable) argument with a command. EP halts execution of analyzer commands so that values may be entered with the front-panel numeric keypad, step keys, knob, and unit-code keys. Data may be entered from the front-panel until the ACCEPT VALUE key is pressed. The syntax diagrams in Chapter 7 provide the commands that can be followed by EP.

To allow front-panel data entry

• Use the EP argument with a compatible command.

```
40 OUTPUT 723; "LG 20DB;" Set the log scale to 20 dB/division.
50 OUTPUT 723; "LG EP;" Change the log scale with the front-panel keys. Enter
```

a number, then press ACCEPT VALUE

Controlling Advanced Measurement Programs

The FP, DFB, and LED measurement keys available under the (USER) menu activate advanced measurement routines. You can also make these measurements over HP-IB. Refer to Chapter 7, "Language Reference" for more information about the following advanced measurement program commands:

- "FP_" for characterizing a Fabry-Perot laser source.
- "DFB_" for characterizing a distributed feedback laser source.
- "LED_" for characterizing a light-emitting diode laser source.

To learn how to measure the characteristics of these laser sources, manually, refer to Chapter 3, "Measuring Signals" in the OSA users' guide.

Making advanced measurements over HP-IB

To make advanced measurements over HP-IB, connect HP-IB as needed. Connect the laser source to the OSA.

Follow the instructions below, or refer to the commands in Chapter 7, "Language Reference", of this manual:

1. To measure a Fabry-Perot source and obtain measurement data, enter the following command lines:

```
30 OUTPUT 723; "AUTOMEAS;" Locate and display the output of the laser source.
40 OUTPUT 723; "FP_;" Measure the output of the Fabry-Perot source.
50 OUTPUT 723; "FP_?;" Query the instrument and return the FP characterization data.
```

2. To measure a distributed feedback laser source and obtain measurement data, enter the following command lines:

```
30OUTPUT 723; "AUTOMEAS;"Locate and display the output of the laser source.40OUTPUT 723; "DFB_;"Measure the output of the laser source.50OUTPUT 723; "DFB_?;"Return the measurement data.
```

3. To measure an LED laser source and obtain measurement data, enter the following command lines:

```
30 OUTPUT 723; "AUTOMEAS;" Locate and display the output of the laser source.
40 OUTPUT 723; "LED_;" Measure the output of the LED source.
```

50 OUTPUT 723; "LED_ ?;" Return the measurement data.

4. To set the right and left power integration points on a signal, enter the following command lines:

```
10 OUTPUT 723; "CENTERWL 900NM;" Set the center wavelength to 900 nm.
20 OUTPUT 723; "TS; " Update the current trace.
30 OUTPUT 723; "AMPMKR -10, dB;" Set the right and left power integration points -10 dB from the peak.
```


2

Using Variables and Traces

Using Variables and Traces

This chapter can help you learn to create variables and process both predefined and user-defined trace arrays.

- Predefined traces, for example trace A, exist permanently in reserved memory.
- User-defined variables and trace arrays are created by the user, given preset values, and stored in internal memory. User-defined variables and trace arrays remain in internal memory, even when power is turned off.

Reserved Words

When creating user-defined variables and traces, do not use the permanently stored OSA reserved words (as listed in Chapter 8, "Tables and Charts") for names. Reserved word usage interrupts the defining process and can disrupt OSA operation.

In addition, any names created with TRDEF, FUNCDEF, ACTDEF or other VARDEF commands become reserved words until they are erased from internal memory.

Contents	Defining Variables	2-4
	To create a user-defined variable	2-5
	To erase a user-defined variable	2-5
	Defining Traces	2-6
	To create a user-defined trace	2-7
	To erase a user-defined trace	
	Using Amplitude Data	2-8
	To select the amplitude units	
	To convert measurement and parameter units	
	To return wavelength and position values	
	Formatting Trace-Data Output	
	Using Math and Move Commands	
	Trace Math Rule 1	
	Trace Math Rule 2	
	Trace Math Rule 3	
	Trace Math Rule 4	2-19

Defining Variables

The OSA retains in reserved memory a set of predefined variables. Each predefined variable stores a current OSA setting or state. Note the two characteristics of these variables:

- 1. Values depend on current instrument settings.
- 2. Names are identical with associated programming commands.

Programming commands which have the same name as a predefined variable load that variable. For example, the command CENTERWL sets the OSA's center wavelength. CENTERWL also loads the predefined variable CENTERWL. Predefined variables reside in reserved memory and are always available to your programs. Both predefined and user-defined variables can be queried to return their values to the computer. Also, variables can be used as arguments to many of the OSA commands listed in chapter 8.

Partial List of Predefined Variables

CENTERWL	CNVLOSS	DL	INZ	LG
MKA	MK ACT	MK AL	MK AR	MKN
MKP	MKPAUSE	MKPX	MKT	MKTV
NSTATE	RB	RBR	RL	RLPOS
ROFFSET	SP	SS	ST	STARTWL
STOPWL	TH	VB	VTL WLOFFSET	

Use the VARDEF command to create and store user-defined variables in internal memory. User-defined variable names are from 1 to 12 characters long and are assigned values immediately after VARDEF is executed. Use PURGE or DISPOSE to erase user-defined variables from internal memory.

To create a user-defined variable

• Use the VARDEF command.

10 OUTPUT 723; "VARDEF MY_VAR,0;"

Create variable called MY_VAR and assign it a value of 0.

To erase a user-defined variable

• Use the DISPOSE command.

10 OUTPUT 723; "DISPOSE MY_VAR;"

Defining Traces

The OSA stores data for traces A, B, and C in reserve-memory trace arrays. These arrays comprise a series of data points (elements) that contain amplitude information. Position units describe the position of an element (point) along the horizontal axis of a trace. The point at the left end of the trace has a position-unit value of 1. The point at the right end of an 800-point trace has a position-unit value of 800. Whenever trace A, B, or C is swept, the analyzer updates the trace's array with new data. You can create your own user-defined trace arrays in internal memory using the TRDEF command. Unlike traces A, B, and C, user-defined traces cannot be swept.

The POSU command converts the wavelength of a point on a trace to position units. The WLU command converts a point on a trace indicated in position units to meters, or in zero-span mode, to units of time.

Predefined and user-defined traces can be 3 to 2048 elements. The default trace length is 800 elements. Use the TRDEF command to change the length of any trace. Use the IP or TRPST (trace preset) command to reset the lengths to their preset values. Use PURGE or DISPOSE to erase a user-defined trace from internal memory.

User-defined trace names can be from 1 to 12 characters long. In the following example, measurement results are transferred to a user-defined trace array called TRACE_Z.

10	CLEAR 723	$Initialize\ analyzer.$
20	OUTPUT 723;"IP;"	
30	OUTPUT 723; "SNGLS; TS;"	$Activate single\hbox{-}sweep mode and sweep$
		once.
40	OUTPUT 723; "TRDEF TRACE_Z,800;"	Create user-defined trace array.
50	OUTPUT 723; "MOV TRACE_Z, TRA;"	Move copy of trace A contents into
		TRACE Z.

To create a user-defined trace

• Use the TRDEF command.

10 OUTPUT 723; "TRDEF TRACE_Z, 1000;"

To erase a user-defined trace

Use the DISPOSE command.
 10 OUTPUT 723;"DISPOSE TRACE_Z;"

Using Amplitude Data

Measurement results are expressed in either parameter units or measurement units. A parameter unit is a standard scientific unit such as Watts, decibels, seconds, hertz, amperes, and ohms. Measurement units are an internal representation of the data. Measurement units apply only to traces and trace elements. In its preset state, the analyzer returns all measurement results in parameter units.

The amplitude parameter units used are shown in the following table. Use the AUNITS command to change the active amplitude units shown in display annotation and returned by queries to the computer.

Amplitude Parameter Units

	Units
Decibels	dB, dBm
Watts	W, mW, μW

For linear trace information, measurement units are defined as 0 (zero) for the bottom of the display, and 10,000 for the top (reference level). For logarithmic trace information, a measurement unit is one hundredth of a dBm:

 $measurement\ unit = (value\ in\ dBm)(100)$

Thus, a -10 dBm value is equal to -1000 measurement units:

-1000 measurement units = -10 dBm (100)

The measurement-unit range is restricted to integers between +32,767 and -32,768. Since measurement units are restricted to integers, -10.115 dBm equals -1012 measurement units, not -1011.5 measurement units because decimal values are rounded to the nearest integer.

-1012 measurement units = -10.115 dBm (100)

Use the AMPU command to convert measurement-unit values to parameter-unit values. The MEASU command converts parameter-unit values to measurement-unit values.

To select the amplitude units

• Use the AUNITS command.

To convert measurement and parameter units

- Use the AMPU command to convert measurement units to parameter units.
- Use the MEASU command to convert parameter units to measurement units.

To return wavelength and position values

- Use the POSU command to determines the trace point that corresponds to a wavelength value.
- Use the WLU command determines the wavelength value of a given trace point.

Formatting Trace-Data Output

The trace-data format (TDF) command controls the format of trace-amplitude data output from the OSA. All the available format modes return amplitude information in measurement units except for TDF P, which returns parameter units. The output formats are summarized in the following table. (Parenthetical numbers in the table are decimal values representing binary, 8-bit numbers.)

Trace Data Output Formats for Amplitude Information

Format Command	OSA Output	Trace Element Output Amplitude of +10 dBm
TDF P	Returns ASCII decimal value. Values are in parameter units. Data output is followed by line feed ASCII code 10 and end-or-identify EOI	+ 10.00
TDF M	Returns ASCII integer value. Values are in measurement units. Line feed ASCII code 10 and EOI follow data output.	+ 1000
TDF B	Returns binary value as one or two 8-bit bytes determined by the MDS command , with most significant byte first. Values are in measurement units. Sends EOI with last byte.	3 232
TDF A	Sends series of one or two 8-bit bytes A-block data field and the number of bytes is determined by the MDS command . Data is preceded by "#" and "A" and two bytes representing length of data field. Values are in measurement units.	# A 0 2 3 232
TDF I	Sends a series of one or two 8-bit bytes -block data field and the number of bytes is determined by the MDS command . Data is preceded by "#" and " ". Values are in measurement units. Sends EOI with last byte.	# 3 232

TDF P formats data as ASCII, decimal values in parameter units. Instrument preset (IP) activates the TDF P format, and the AUNITS (amplitude units) command specifies the kind of parameter units. The default units are volts for linear trace information and dBm for logarithmic trace information. A line feed (ASCII code 10) follows data output. The end-or-identify state (EOI) is sent with line feed. The TDF P format is convenient because it returns parameter-unit values, but it is the slowest of the data-format modes.

TDF M formats data as ASCII, integer values in measurement units. (Thus, the AUNITS command has no affect on returned data.) A line feed (ASCII code 10) follows data output. The end-or-identify state (EOI) is sent with line feed. The TDF M format is faster than the TDF P format, but requires conversion to parameter units.

TDF B formats data in measurement units as binary numbers. Numbers are transmitted usually as words. (A word is two 8-bit bytes.) The results are transmitted in the following order:

- The most significant byte is sent first.
- The least significant byte is sent next.
- EOI is sent with the last byte.

For speed at the cost of accuracy, the measurement-data-size command (MDS) may be used to consolidate the information contained in a word into one byte (MDS B). However, since trace math operations often produce numbers too large to be contained in one byte, the use of bytes instead of words as the data size is not recommended, especially during trace-math operations. Instrument preset (IP) selects words as the default data size.

TDF A and TDF I format data into absolute and indefinite block-data fields. Both formats return the same kind of data, binary words (MDS W) or bytes (MDS B) as a block of data. However, the formats differ in the way they indicate the number of bytes or words returned. The TDF A format precedes the data with # A and two bytes that specify the number of data bytes returned. On the other hand, the TDF I format precedes the data with "# I" and sends EOI (end or identify) with the last byte of data. The block-data formats are available for compliance with IEEE standards. They have the same limitations as the binary format, TDF B, when bytes are chosen as the measurement data size.

The following table shows an HP-IB transmission sequence for each format. Each one transmits the +10 dBm amplitude level of a trace element. Remember that even though the analyzer transmits binary or ASCII-decimal information on HP-IB, a decimal number is always returned to the HP 9000 series 200 or 300 controller. The parenthetical numbers in the table are decimal values representing binary, 8-bit numbers.

Formatting Trace-Data Output

Transmission Sequence for Trace-Data Formats

	TDF P	TDF M	TDF B	TDF A	TDF I
Byte 1	1	1	3	#	#
Byte 2	0	0	232-E01	А	1
Byte 3		0		0	3
Byte 4	0	0		2	232-E0I
Byte 5	0	10 E0		3	
Byte 6	10 E0			232	
				10-E0I	

The format of the computer must be compatible with the output format of the analyzer. The following table and programming examples illustrate this concept.

Computer Formats

Analyzer Format	Computer-Format Requirements	Example in HP BASIC
TDF M	Free field	10 ENTER 723;Amplitude
TDF P	Free field	10 ENTER 723;Amplitude
TDF B	Binary. Read twice for each value if data size is words. See MDS.	10 ASSIGN @Sa TO 723;FORMAT OFF
		20 ENTER @Sa USING "#,W";Z *
TDF A	Initially read four values for #, A, and ength in any format. Use integer format for data that follows. Refer to MDS	10 ASSIGN @Sa TO 723;FORMAT OFF
		20 ENTER @Sa;Pounda,Num_bytes
		30 ALLOCATE INTEGER Z 1:Num_bytes/2
		40 ENTER @Sa;Z *
TDF I	Initially read two values for #, in any format. Use integer format for data that follows. Refer to TDF	10 ASSIGN @Sa TO 723;FORMAT OFF
		20 ENTER @Sa;Poundi
		30 ENTER @Sa USING "#,W";Z *

The following examples illustrate the four ways trace data can be formatted for return to the computer. The last example also shows how to send the trace data from the computer back to the analyzer. To return trace data as decimal numbers in parameter units (TDF P):

10 OUTPUT 723; "TDF P;"

20 OUTPUT 723; "TRA[10]?;"

30 ENTER 723; N

Return amplitude of trace element in parameter units.

Assign value of (-10.33) to N.

To return trace data as integers in measurement units (TDF M):

10 OUTPUT 723; "TDF M;"

Activate measurement-unit format.

20 OUTPUT 723; "TRA[10]?;"

Return amplitude of trace element in measure-

ment units.
30 ENTER 723; N Assign value (-1033) to N.

To return trace data as binary numbers with data size of one word (TDF B).

10 INTEGER Z(1:800) Declare integer array.

Formatting Trace Data Output

```
20 ASSIGN @Sa TO 723
30 ASSIGN @Sa_fast TO 723; FORMAT OFF
                                            Assign fast I/O path to 723.
40 OUTPUT @Sa; "MDS W;"
                                            Define data size as one word.
50 OUTPUT @Sa; "TDF B;"
                                            Activate binary data format.
60 OUTPUT @Sa; "TRA?;"
                                             Return amplitude of all trace elements
                                             in measurement units.
                                            Load binary values into array Z. "#"
70 ENTER @Sa_fast USING "#,W";Z(*)
                                            specifies that line execution is termi-
                                             nated when last ENTER item is termi-
                                             nated. "W" specifies that items loaded
                                             are words (two bytes).
```

To return trace data in block-data format with data size of one word (TDF A), then send data back to analyzer.

1 OUTPUT 723; "SNGLS; SP 1MHZ; CF 300MHZ;"	Activate single-sweep mode. Set measurement range.
5 OUTPUT 723;"TS;"	Sweep trace A.
10 INTEGER Pounda, Num_bytes	Declare integer array.
20 ASSIGN @Sa TO 723	
30 ASSIGN @Sa_fast TO 723;FORMAT OFF	Assign fast I/O path to 723.
40 OUTPUT @Sa;"MDS W;"	Define data size as one word.
50 OUTPUT @Sa;"TDF A;"	$Activate\ absolute\ block-data\ format.$
60 OUTPUT @Sa;"TRA?;"	Return amplitude of all trace elements.
70 ENTER @Sa_fast; Pounda, Num_bytes	$Assign \#A \ to \ Pounda. \ Assign \ length,$
·	that is, the number of bytes re-
	turned to computer, to Num_bytes.
	(Temporary variables.)
80 ALLOCATE INTEGER A(1:Num_bytes/2)	$Declare\ array\ with\ length\ of\ Num_bytes/2.$
90 ENTER @Sa_fast; A(*)	Store contents of trace A in an
	$integer\ array.$
100 OUTPUT @Sa; "TRDSP TRA,OFF;"	$Stop\ display\ of\ trace\ A.$
110 OUTPUT @Sa;"TRC";	This line and the next line store
	the contents of the integer array in
	trace C. The semicolon is required
	$to\ suppress\ carriage ext{-}return \ line ext{-}feed$
	so that the TRC-command statement
100 OUTDUT AC. f + . D	is not terminated prematurely.
120 OUTPUT @Sa_fast;Pounda;Num_bytes;A(*)	Send #A and length to OSA, followed by contents of integer array.
	As required by the TRC-command
	syntax, the @Sa_fast format removes
	commas that separate the numbers
	inside the integer array.
130 OUTPUT 723; "VIEW TRC;"	View trace C.

Using Math and Move Commands

This section covers math and move commands which modify data and store the results in memory. In addition, four rules are provided for using math with trace arrays and elements.

Each math and move command requires both source and destination arguments. The value of the source is used to obtain the data stored in the destination. Only variables or traces can be a destination. Sources can be variables, traces, real numbers, or any command listed in the following table. (The commands in this table can only be used with commands whose syntax diagram shows predefined function as a source. Syntax diagrams for each command are illustrated in Chapter 7.)

Commands That Can Be a Source

Command	Definition
AMPU	Amplitude-unit conversion
FUNC DEF	Create user-defined function
MEAN	Mean value of data points
MEASU	Measurement-unit conversion
MEM	Available internal memory
MKBW	Marker bandwidth
MODADD	Return slave module's HP-MSIB address
MODID	Identify module or instrument HP-MSIB address
PEAKS	Trace peaks found
POSU	Position-unit conversion
PWRBW	Power bandwidth
RMS	Root mean square
STB	Status byte
STDEV	Standard deviation of trace values
SUM	Sum
SUMSQR	Sum of squares
VARIANCE	Variance
WLUNITS	Wavelength-unit conversion

Below, the MOV command transfers a value from the source (predefined variable) to the destination (user-defined variable).

Using Math and Move Commands

```
10 OUTPUT 723; "MOV WAVELENGTH, CENTERWL;" Copy center wavelength value into WAVELENGTH variable.
```

The next example uses the multiple command, MPY, to increase the center wavelength by 10%.

```
10 OUTPUT 723; "MPY CENTERWL, CENTERWL, 1.1;"
```

Trace Math Rule 1

• Avoid truncating data from using a destination length that is shorter than the source length.

Data is lost when a trace is operated on and stored in a trace of lesser length (that is, of fewer points) or in a variable. When using an active source trace, the portion of the trace not stored is lost when it is updated with new sweep information. The example below shows how trace information may be lost when moving a trace array into a shorter trace array. Since the user-defined trace array, TRACE, is shorter than trace A, amplitude information contained in the last 400 data points is lost when trace A is updated.

```
30 OUTPUT 723; "SNGLS;TS;"

40 OUTPUT 723; "TRDEF TRACE, 400;"

50 OUTPUT 723; "MOV TRACE, TRA;"

Copy amplitude information of trace A into TRACE.

60 OUTPUT 723; "TS;"

Update trace A with new sweep information.
```

When a short trace or variable is operated on and stored in a trace of longer length, the last trace element is extended for operations with the longer length.

Trace Math Rule 2

• Trace elements greater than +32,767 and less than -32,768 are truncated.

Math operations are restricted to the legal range of measurement units when trace arrays or elements form the destination or source.

10 OUTPUT 723; "MPY TRA[100], 1000, 1000; " Multiplies 1000 times 1000, then stores truncated value (32, 767) in trace element.

Trace Math Rule 3

 When the source is a real number or variable and the destination is a trace array or element, use the MEASU command to preserve decimal values and yield parameter units

The source and destination express numbers in different units, making a conversion necessary. All trace amplitude information is stored internally and manipulated in measurement units. If the conversion to measurement units is omitted, returned data is inaccurate by a factor of 100 and significant digits may be lost.

In the following example, the marker is assumed to be marking a signal at -10.33 dBm.

```
10 OUTPUT 723; "MOV TRB[100], MKA;"

Copy integer value of marker (-10) into trace B element. TRB[100] now contains -10 measurement units.

20 OUTPUT 723; "TRB[100]?;"

Return -0.1 dBm (false value).
```

In following example uses the MEASU command to preserves decimal values and returns trace amplitude values in parameter units.

10	OUTPUT 723;"MOV TRB[100], MEASU MKA;"	$Convert\ marker\ amplitude\ (-10.33)$
		to measurement units, then move
		value (–1033) into trace element.
		$TRB[100]\ now\ contains-1033\ mea$
		surement units.
20	OUTPUT 723;"TRB[100]?;"	$Return\ -10.33$ (correct value).

Using Math and Move Commands

The following table lists math and move commands that may require the use of the ${\tt MEASU}$ command.

Math and Move Commands Requiring Conversion with MEASU

Command	Definition
ABS	Compute absolute value.
ADD	Add sources, point by point.
AVG	Average source with destination, point by point.
BIT	Store or return value of bit.
CONCAT	Concatenate traces.
DIV	Divide sources, point by point, then discard remainder.
EXP	Divide source by scaling factor and raise to power of 10.
INT	Compute integer value.
LOG	Compute logarithm.
MEAN	Compute mean value of points.
MIN	Retain minimum value.
MOD	Divide sources, point by point, then retain remainder.
MOV	Duplicate value(s) contained in source and place in destination.
MPY	Multiply sources, point by point.
MXM	Retain maximum value.
RMS	Compute root mean square of source, point by point.
SQR	Compute square root of source, point by point.
STDEV	Compute standard deviation.
SUB	Subtract sources, point by point.
SUM	Add sources, point by point.
SUMSQR	Add square of sources, point by point.
VARIANCE	Compute variance.
XCH	Exchange sources.

Trace Math Rule 4

 For greatest, use single point destinations, such as a trace element or a variable.

If the destination consists of multiple points, the math functions round the sources first, then perform the requested operation. If the destination is a single point, the math functions compute the results in floating point, and then rounds the results if necessary. The following example shows how the product of 2.45 and 3.45 is 6 or 8 depending on the destination.

```
    50 OUTPUT 723; "MPY TRC, 2.45, 3.45;" Fill trace C array with 2 X 3, or 6.
    60 OUTPUT 723; "TRC[1]?;" Return 6 to computer.
    70 OUTPUT 723; "MPY TRC[1], 2.45, 3.45;" Loads trace element with integer value of 2.45 X 3.45, or 8.
    90 OUTPUT 723; "TRC[1]?;" Return 8 to computer.
```


3

Controlling Memory

Controlling Memory

Memory is an area where information can be stored for future recall. Memory that is available for the user is called **user memory**. This chapter discusses the control of the three types of user memory:

- Internal user memory, located within the optical spectrum analyzer
- External user memory located on HP-IB, such as a disc drive
- External user memory located on HP-MSIB, such as the memory card in the HP 70004A display

Reserved memory is for operations that are not under the user's control. Reserved memory is affected by power loss.

Contents

Saving and Recalling Items
To select user memory
To catalog memory
To save a file
To recall a file
Erasing Memory
To erase files
To erase all memory except correction factors and serial-number 3-9
To erase all memory for security
Protecting Memory
To protect files from erasure
Freeing Memory 3-12
To free the greatest amount of internal memory
To reduce the size of user-defined functions

Saving and Recalling Items

You can save the following items in internal memory. The commands for saving are shown in parentheses.

- User-defined traces (TRDEF, LOAD)
- User-defined variables (VARDEF, LOAD)
- User-defined functions (FUNCDEF, LOAD)
- Active user-defined functions (ACTDEF, LOAD)
- On-end-of-sweep algorithms (ONEOS, LOAD)
- Trace-amplitude correction offsets (AMPCOR)
- State register files (instrument settings STOR, NSTATE, SAVES)
- Trace files (STOR, SAVET)
- (USER) keys files (STOR, SAVEU)
- Limit-line files (STOR, LIMISAV)

Internal Battery

Internal memory is nonvolatile and is not altered by loss of power. Internal memory remains nonvolatile as long as the 3.6V lithium battery supplies power. The battery should last 8 years at 25° C, or one year at 55° C. Refer to the *Installation and Verification Manual* for installation instructions.

Unlike internal memory, external memory can only store items that are saved using the SAVE and STOR commands. External memory is nonvolatile and is not altered by loss of power. The following items can be stored in external memory.

- State register file (Instrument settings STOR, SAVES)
- Trace file (STOR, SAVET)
- (USER) keys file (STOR, SAVEU)
- Limit-line file (STOR, LIMISAV)
- Program file (STOR, SAVED)

Use the mass-storage-interface command, MSI, to select the desired user memory. When power is applied to the analyzer, internal memory is selected

until the MSI command or the catalog & MSI softkey selects another storage device.

The catalog of user memory gives a description of articles stored in the currently selected user memory. To view the catalog, execute DSPMODE CAT. To return the catalog to the computer, use the DSPTEXT command. Stored articles are listed by name, followed by the article type, and the size of the article in bytes. The names of files stored by the save commands consist of a number preceded by a prefix that indicates the type of data stored in the file. The prefix can be changed with the PREFX command.

The articles that can be stored in user memory are listed in the following table.

Catalog of User Memory

Stored Article	Storing and Recalling Commands	File Type	Default File Prefix
User-defined trace*	TRDEF, LOAD, RCLD	TRACE	none
User-defined variable*	VARDEF, LOAD, RCLD	VAR	none
User-defined function *	FUNCDEF, LOAD, RCLD	FUNC	none
Active user-defined function *	ACTDEF, LOAD, RCLD	AFUNC	none
On-end-of-sweep algorithm *	ONEOS, LOAD, RCLD	ONEOS	none
Trace-amplitude correction offsets*	AMPCOR	AMPCOR	none
Limit-line trace arrays, LIMIT_LO and LIMIT_HI*	LIMILINE, LOAD, RCLD	TRACE	none
State-register file instrument settings and title-line	STOR, LOAD, SAVES, NSTATE, RCLS	ASCII	S_
Program file †	STOR, SAVED, RCLD	ASCII	d_
Trace file	STOR, LOAD, SAVET, RCLT	ASCII	t_
(USER) keys file	STOR, LOAD, SAVEU, RCLU	ASCII	u_
Limit-line file	STOR, LOAD, LIMISAV, LIMIRCL	ASCII	L

*Indicates article can be stored in internal memory only †Indicates file can be stored in external memory only

Saving and Recalling Items

To select user memory

• Send the MSI command.

To catalog memory

 $\bullet\,$ Send the DSPMODE CAT command to display catalog on OSA.

or

• Send the DSPTEXT command to return the catalog to the computer.

To save a file

Use the SAVE and STOR commands when saving to external memory.

• Use the ACTDEF, AMPCOR, FUNCDEF, LIMISAV, LOAD, NSTATE, ONEOS, SAVES, SAVET, SAVEU, STOR, TRDEF, and VARDEF commands when saving to internal memory.

To recall a file

• Use the LIMIRCL, LOAD, RCLD, RCLS, RCLT, and RCLU commands to recall files from memory.

Erasing Memory

Use the DISPOSE command to erase items from internal memory. DISPOSE ALL erases *all* contents of internal memory. Use the PURGE command to erase items from either internal or external memory, depending on the storage device selected.

The ERASE command erases *all* memory in the OSA for security purposes, including internal memory, instrument settings, user-entered serial-number information, trace data, user-entered correction factors, and offsets. ERASE does not erase data in external memory, such as memory on a memory card or a disk drive. The partial erase command, PERASE, erases all internal memory and instrument settings. PERASE does not affect the correction factors or serial-number information.

CAUTION

Use the ERASE command for security purposes only. ERASE destroys *all* contents of internal memory.

In the event of power loss, reserve memory is lost. For example, all active trace information is lost. The current values of all predefined variables and instrument settings are lost unless they are stored in a state-register file before power is removed. Instrument settings and predefined variables not saved in state registers may be retrieved when power is returned if the POWERON command is set to LAST before power is removed. Otherwise, the instrument settings and predefined variables return to their preset state when power is returned.

The FORMAT command erases internal or external memory. If a memory card or a disk drive (floppy) is selected with the MSI command, FORMAT initializes it.

Commands that Erase User Memory

Memory Components Storing Commands Shown in Parentheses		Commands that Erase or Reset Memory		
	PURGE	DISPOSE*	NSTATE	
	FORMAT	PERASE*		
		ERASE*		
user-defined variable (VARDEF, LOAD, RCLD)	Х	Х		
user-defined trace (TRDEF, LO AD, RCLD)	Х	Χ		
user-defined function (FUNCDEF, LOAD, RCLD)	Х	Х		
active user-defined function (ACTDEF, LOAD, RCLD)	Х	Х		
on-end-of-sweep-algorithm (ONEOS, LOAD, RCLD)	Х	Х		
trace-amplitude correction factors (AMPCOR)	Х	Х		
state register file (instrument settings and title line, SAVES, STOR)	Х	Х	Х	
program file (SAVED, STOR)	Х	Х		
trace file(SAVET, STOR)	Х	Х		
(USER) keys file (SAVEU, STOR)	Х	Χ		
Limit line file (LIMISAV, STOR)	Х	Х		
*NISPOSE PERASE and ERASE erase internal memory only				

^{*}DISPOSE, PERASE, and ERASE erase internal memory only.

To erase files

• Use the DISPOSE, ERASE, FORMAT, PERASE, or PURGE command.

To erase all memory except correction factors and serial-number

• Execute the PERASE command.

To erase all memory for security

CAUTION

Use the ERASE command for security purposes only. ERASE destroys *all* contents of internal memory.

- 1. Execute the ERASE command.
- 2. Execute system-level command, CLEAR 723 (in HP BASIC), to reset the OSA's input buffer.
- 3. Recycle the OSA's power.
- 4. Execute the error-correction routines to obtain calibrated measurement results. (Refer to the CAL command.)

Protecting Memory

The PROTECT command protects internal memory against erasure by the PERASE, FORMAT and DISPOSE commands. The PSTATE command protects state-register files on both internal or external memory.

On memory cards, the write-protect switch, when set to SAFE, protects the card's contents from erasure. For other HP-MSIB or HP-IB devices, refer to protection instructions for your particular mass storage device.

Internal Memory Erasure

The PROTECT and PSTATE commands do not prevent internal memory erasure with the ERASE command.

To protect files from erasure

- Use PROTECT to protect internal memory files.
- \bullet Use PSTATE to protect state register files.
- Use the memory card's write-protect switch to protect files on a card.

Commands that Erase or Protect User Memory

Memory Components Storing Commands Shown in Parentheses		Commands that Protect Memory	
	PROTECT†	PSTATE	
user-defined variable (VARDEF, LO AD, RCLD)	Х		
user-defined trace (TRDEF, LOAD, RCLD)	Х		
user-defined function (FUNCDEF, LOAD, RCLD)	Х		
active user-defined function (ACTDEF, LOAD, RCLD)	Х		
on-end-of-sweep-algorithm (ONEOS, LOAD, RCLD)	Х		
trace-amplitude correction factors (AMPCOR)	Х		
state register file (instrument settings and title line, SAVES, STOR)	Х	Х	
program file (SAVED, STOR)	Х		
trace file(SAVET, STOR)	Х		
(USER) keys file (SAVEU, STOR)	Х		
Limit line file (LIMISAV, STOR)	Х		
†PROTECT protects internal memory only.			

Commands that Erase Reserved Memory

Memory Components		Commands that Erase or Reset Memory		
	PERASE	ERASE	IP	
correction factors(CAL)		Χ		
serial numbers		Χ		
active trace data (trace A, B, or C)	Х	Χ	Х	
instrument settings not stored in state registers	Х	Χ	Χ	

Freeing Memory

When internal memory is full, an overflow message appears on the screen. You can increase available internal memory by erasing user-defined traces, variables, and functions. Use the PURGE and DISPOSE commands to erase these items.

Reduce trace size using the TRDEF command. An 800 element trace occupies 1646 bytes of memory, that is, 2 bytes for each element and 46 bytes for trace overhead. Reduce the size of user-defined functions by inhibiting the carriage-return/line-feed (CR/LF) generated by the computer at the end of each program line. The following HP BASIC example shows the HIGH_PEAK function with CR/LFs suppressed. (In HP BASIC, a semicolon placed at the end of a source line suppresses the CR/LF characters. With CR/LFs removed, HIGH_PEAK occupies 11% less memory space, that is, 47 bytes instead of 53.

```
30 OUTPUT 723;"FUNCDEF HIGH_PEAK,@";
40 OUTPUT 723;"STARTWL 700NM;STOPWL 900NM;";
50 OUTPUT 723;"TS;MKPK HI;";
60 OUTPUT 723;"@;"
```

To free the greatest amount of internal memory

10 OUTPUT 723;"MSI INT;"

20 OUTPUT 723; "PROTECT ALL, OFF; "

30 OUTPUT 723; "DISPOSE ALL;"

Select internal memory.
Disable protection.
Dispose all unprotected variables, traces, functions, keys, and on-end-of-sweep algorithms.

To reduce the size of user-defined functions

• Suppress any carriage-return/line-feeds located at the end of source-code lines.

4

Monitoring System Operation

This chapter describes how service requests are used to monitor system operation. Service requests can be set to occur automatically. You can also monitor system operation without using service requests, as explained in this chapter.

Contents

Monitoring System Operation	. 4-4
Interrupt Process	. 4-5
Analyzer Status-Byte Register	4-5
Service-Request Mask	. 4-6
Service-Request Examples	4-7
Monitoring System Operation Without Using Service Requests	. 4-11
Debugging Programs	4-12
To debug a program	4-12

The programming techniques discussed so far describe communication between the analyzer and the computer, where the sequence of all data transfer is controlled by a computer program. This section tells how the analyzer can interrupt computer operation when the analyzer has attained a particular state.

The interrupting process is called a service request. Service requests have many applications. They facilitate economical use of computer processing time when the analyzer is part of a large-scale measurement system. For example, after the computer initiates an analyzer measurement, the computer can make calculations or control other devices via HP-IB while the analyzer is measuring. When the analyzer is through, it signals the computer with a service request. The service-request subprogram then determines what the computer will do next. Service requests can also report analyzer errors while interrupting computer processing.

Interrupt Process

The interrupt process begins when the analyzer "requests" attention by setting the HP-IB service-request (SRQ) line true. The computer responds by branching to a special subroutine that examines the status of each instrument on HP-IB. Computer operation then branches to another subroutine that is determined by the status of the instrument that requested service (the analyzer in this case). In this way, the computer "services" the analyzer's "request." These steps are summarized below:

- 1. Computer monitors HP-IB service-request (SRQ) line.
- 2. Analyzer requests service by setting SRQ line true.
- 3. Computer branches to subroutine that examines analyzer state.
- 4. Computer branches to subroutine determined by analyzer state.

Several system-level commands are required to make the computer responsive to service requests. The HP BASIC command, ENABLE INTR (enable interrupt), tells the computer to monitor the service-request line. The on-interrupt command, ON INTR, specifies where the computer program will branch when a service request occurs. If more than one service request is possible, the serial-poll command, SPOLL, is needed to examine the nature of the service request. These HP BASIC commands, ENABLE INTR, ON INTR, and SPOLL, are used with the HP 9000 Series 200 and 300 computers.

Analyzer Status-Byte Register The analyzer status-byte register is the communicating link between the analyzer and the computer. The status-byte register indicates what state the analyzer is in.

The status-byte register consists of eight bits. Bits 0, 1, 2, 4, and 5 represent particular aspects of analyzer operation, such as end-of-sweep, or error conditions. These are listed in Table 1-13. The state of these bits, set (true) or cleared (false), is determined by the analyzer state.

If the service-request mode is enabled, all of the status-byte bits reflect the current state of the analyzer until the conditions of a service request are met.

In this case, the bit or bits that satisfy the service-request condition remain in the true state until the status byte is interrogated by the system-level, serial-poll command SPOLL, or until the system-level CLEAR command is executed. These commands clear the status byte so that all the bits in the byte once again reflect the current state of the analyzer until another service request occurs. In this way, the process begins again.

Service-Request Mask

The service-request mode is enabled and controlled by the request-service-condition command, RQS. It defines a service-request mask which specifies which of the status-byte bits may generate a service request. Below, RQS specifies the ERROR-PRESENT and COMMAND-COMPLETE states (bits 5 and 4) for service requests.

Example Enable service requests for an ERROR-PRESENT condition.

OUTPUT 723;"RQS 48;" Selects bit 5 and 32 to enable service-request mode for ERROR-PRESENT.

Once RQS is executed, the analyzer requests service by setting the SRQ line true when any of the enabled conditions become true.

Optical Spectrum Analyzer Status Byte Register

Bit Number	Decimal Equivalent	Analyzer State	Description
7	128		Unused
6	64	RQS	Set when any selected service condition is met.
5	32	ERROR-PRESENT	Set when error register contains an error.
4	16	COMMAND-COMPLETE	Set at completion of command execution.
3	8		Unused
2	4	END-OF-SWEEP	Set at completion of sweep.
1	2	MESSAGE	Set when messages appear, such as the uncalibrated or corrected prompts, "UNCAL" or "USERCAL."
0	1	TRIGGER-ARMED	Set when analyzer is ready to receive a sweep trigger.

Service-Request Examples

The following program uses service requests to monitor measurement errors in the analyzer. If an error occurs, computer operation is interrupted and a description of the error is printed.

EXAMPLE Enable ERROR-PRESENT service request and return error description.

```
ASSIGN @Sa TO 723
                                               Initialize analyzer.
20
   COM\INSTR\@Sa
   CLEAR @Sa
30
    OUTPUT @Sa; "IP; SNGLS; TS; "
40
50
    ON INTR 7 CALL Error
                                               Define computer interrupt branching.
   ENABLE INTR 7;2
60
                                               Enable computer interrupts.
70
    OUTPUT @Sa; "RQS 32;"
                                               Enable ERROR-PRESENT service request.
80
90
    Idle:GOTO Idle
                                               Monitor service request line while measur-
                                               ing.
                                               (This is where your measurement routine
                                               belongs.)
100 !
110 END
120
130 SUB Error
                                               Interrupt-handling subroutine.
140 COM\INST\@Sa
150 DIM Mod_num$[6], Err_text$[30]
160 OUTPUT @Sa; "XERR?;"
                                               Return error description.
170 ENTER @Sa USING"5(K)"; Error_num,
Mod_num$,Row_num,Col_num,Err_text$
180 PRINT Error_num; Mod_num$;
Row_num; Col_num; Err_text$
190 SUBEND
```

The next program uses service requests to allow the computer to process data or control other instruments while the analyzer is taking a long sweep. When the sweep is completed, the analyzer generates a service request which interrupts the computer, instructing it to accept the measurement data from the analyzer.

EXAMPLE Enable END-OF-SWEEP interrupt, then return trace data when the sweep has ended.

10 OPTION BASE 1	Define first element of array as "1."
20 ASSIGN @Sa TO 723	${\it Initialize\ analyzer.}$
30 COM\INSTR\@Sa	
40	
50 CLEAR @Sa	
60 OUTPUT @Sa;"IP;SNGLS;TS;"	
70 ON INTR 7 CALL Trace_out	$Define\ computer-interrupt$
	branching.
80 ENABLE INTR 7;2	${\it Enable\ interrupts}.$
90 OUTPUT @Sa;"RQS 4;"	Enable END-OF-SWEEP service request.
100 OUTPUT @Sa;"ST 100S;"	Set sweep time to 100 seconds.
110 OUTPUT @Sa;"TS;"	Sweep analyzer.
120 !	sweep analyse.
130 Idle: GOTO Idle	Monitor service-request line while controlling other de- vices via HP-IB.
140 !	
150 END	
160 !	
170 SUB Trace_out	${\it Trace-output\ subprogram}.$
180 OPTION BASE 1	
190 COM\INST\@Sa	
200 COM Trace_a(800)	
210 OUTPUT @Sa;"TRA?;"	$Return\ trace\ data.$
220 ENTER @Sa;Trace_a(*)	
230 SUBEND	

The following program handles two types of service requests. One of them requests service when the analyzer has completed a sweep. The other requests service when an error occurs in the analyzer. When either request is generated, the computer examines the status-byte register using the SPOLL command to determine what caused the service request (end of sweep).

EXAMPLE Enable multiple service requests. Use HP BASIC command, SPOLL, to examine status byte.

```
10
   OPTION BASE 1
20
   ASSIGN @Sa TO 723
   COM\INSTR\@Sa
30
40
   COM Trace_a(800)
   CLEAR @Sa
50
   OUTPUT @Sa; "IP; SNGLS; TS; "
60
    ON INTR 7 CALL Interrupt
70
80
   ENABLE INTR 7;2
90
   OUTPUT @Sa; "RQS 36;"
100 OUTPUT @Sa; "ST 10S; "
110 OUTPUT @Sa;"TS;"
120 !
130 Idle: GOTO Idle
140 !
150 END
160 !
```

```
170 SUB Interrupt
180 S=SPOLL (723)
190 IF BIT(S,2)THEN CALL Trace_out
200 IF BIT(S,5)THEN CALL Error
210 SUBEND
220 !
230 !
240 SUB Trace_out
250 OPTION BASE 1
260 COM\INSTR\@Sa
270 COM trace_a(800)
280 OUTPUT @Sa;"TRA?;"
290 ENTER @Sa;Trace_a(*)
300 SUBEND
310 !
320 SUB Error
330 DIM Mod_num$[6], Err_text$[30]
340 ASSIGN @Sa TO 723
350 OUTPUT @Sa; "XERR?;"
360 ENTER @Sa USING
    "S(K)"; Error_num, Mod_num$, Row_num, Col_num, Err_text$
370 PRINT Error_num; Mod_num$; Row_num; Col_num; Err_text$
380 SUBEND
```

Monitoring System Operation Without Using Service Requests

The easiest method to synchronize the execution of commands with other events is with the DONE command. This has the disadvantage that the computer is not available for other processing while waiting for the analyzer to complete its commands.

The STB command may be used to monitor the value of the status byte at any time. Executing STB? returns the decimal equivalent of the status-byte register to the computer. Executing STB? is similar but not identical to conducting a serial poll of the status byte. Both methods will return the current value of hte status byte. When STB? is executed, the status-byte register is cleared, and then bit 4, COMMAND-COMPLETE, is set. When a serial poll is done, the status byte is cleared only if the service request mask is nonzero, as set by the RQS command.

To use the status byte to monitor the completion of any command without using the computer interrupt system, the following sequence should be followed:

- 1. Send all commands required before the command that is to be monitored.
- 2. Send DONE? to the analyzer followed by a query. The purpose is to ensure that all above commands have been completed.
- 3. Send RQS 16, COMMAND-COMPLETE, to the analyzer. This instructs the analyzer to generate a service interrupt when the command is complete. It is not necessary to enable the interrupt system of the computer.
- 4. Do a serial poll of the analyzer status byte (by using SPOLL in HP BASIC). This clears the status byte including bit 4, COMMAND-COMPLETE.
- 5. Send the command that is to be monitored to the analyzer.
- 6. Do a serial poll of the analyzer status byte anytime that it is desired in order to determine if the command sent in step 5 above has been completed. Bit 4 of the status byte will be clear until the command completes. Once the command is completed, bit 4 will be set the next time that the status byte is queried.

Debugging Programs

The OSA's debug feature help to locate faulty program code. When the mode is on, each command sent to the OSA is tested and then displayed on the OSA's data line (located below the graticule). When a faulty command is encountered, subsequent commands are not executed. The faulty command is the last command shown to the right end of the displayed data line. Use the DEBUG command to turn debugging on and off.

The debug mode has fast and slow settings. Use fast debugging for trapping errors. Slow debugging executes the program slowly so you can monitor the execution of each command, much like stepping through a program on a computer. Both slow and fast debugging modes slow the execution of analyzer commands and should be turned off when not needed, either with the front-panel controls or remotely via HP-IB.

The PAUSE command is another debugging function. When executed, PAUSE suspends program operation and activates the debugging front-panel keys, STEP and CONT. STEP executes the analyzer program, one command at a time. CONT continues program operation. Once program operation is halted, either by command or by error during debug mode, no further remote input is possible until CONT is pressed or DEBUG On Off is set to off, or a device-clear is sent (HP BASIC command CLEAR 723).

To debug a program

• Place the DEBUG command before a section of code that needs testing.

```
30 OUTPUT 723; "DEBUG SLOW;" Activate slow debug mode.
40 OUTPUT 723; "SENS UP; ILLEGAL;" Operation stops at illegal command, called ILLEGAL.
50 OUTPUT 723; "TS;"
60 OUTPUT 723; "MKPK HI;"
```

5

Creating Graphics

Creating Graphics

This chapter explains how to draw objects and print text on the display. A display, such as the HP 70004A, HP 70205A, or HP 70206A, is required for graphics capability.

Graphics allow you to customize the display for your applications. Some of the tasks you can perform include the following:

- Creating line drawings
- Displaying text messages
- Displaying measurement results
- Creating custom sized windows
- Changing display sizing and scaling

Contents

Clearing the Display 5-4
To clear the display5-4
Creating Graphics5-5
To create a drawing5-9
Drawing Grids 5-10
Drawing Graphics Items
To use a graphics item5-15
To delete a graphics item
Displaying Text 5-16
To display text 5-19
To erase text 5-19
Displaying Variables 5-20
To display a variable 5-20
To erase displayed variables
Changing the Scale
Using Graphics Windows 5-24
To reduce the display area5-27
To create a graphics window 5-27
To place a trace in a window

Clearing the Display

Use the following commands to clear the display for graphics:

- IP blanks the display line, trace B, and trace C by executing DL OFF, BLANK TRB, and BLANK TRC automatically.
- CLRDSP erases *all* user-created graphics from the display and memory, except the contents of the title line. If you have stored graphics you wish to recall for future display, use the DELETE command to erase items individually.
- ANNOT OFF blanks all annotation except the display status box and the data line.
- GRAT OFF blanks the graticule. You may create a different graticule with the GRID command explained at the end of this section.
- TRDSP blanks traces. Unlike BLANK, traces blanked with TRDSP can be updated with each sweep or marked with markers.

To clear the display

Send the following command strings to the OSA.

```
40 OUTPUT 723; "CLRDSP;"

50 OUTPUT 723; "ANNOT OFF; GRAT OFF;"

60 OUTPUT 723; "TRDSP TRA,OFF;"

60 OUTPUT 723; "TRDSP TRB,OFF;"

60 OUTPUT 723; "TRDSP TRB,OFF;"

60 OUTPUT 723; "TRDSP TRC,OFF;"

61 Blank trace A.

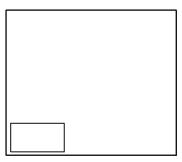
62 Blank trace B.

63 OUTPUT 723; "TRDSP TRC,OFF;"

64 Blank trace C.

65 Blank display line.
```

Creating Graphics

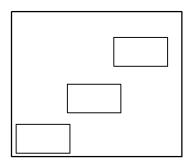

Creating graphics is just like using a pen and paper. Graphics are drawn on the display using an imaginary pen on an electronic tablet. The PD (pen down) command draws on the display as the pen is moved. The PU (pen up) command lifts the pen. Use PU to reposition the pen without drawing. When the pen is lifted, previously drawn graphics are not erased (just as with a pen and paper). Use the LINET command to select the type of line drawn.

Once drawn, objects *cannot* be moved, erased, or redrawn. However, if you use IT to assign graphics objects to an item (refer to "Drawing Graphics Items" in this chapter), you can move, erase, or redraw them. The pen must be placed down to draw all objects except those defined with the item command, IT, or characters written with the TITLE or TEXT command. You must place the pen down in order to draw lines (PA and PR), grids (GRID), graphics markers (MK), or traces (GRAPH).

The pen is positioned on an X-Y coordinate system different ways. The PA command (plot absolute) moves the pen to an absolute position on the display. The PR command (plot relative) moves the pen to a position on the display relative to the current pen position. With each command, you specify a series of X-Y coordinates that moves the pen. The number of X-Y coordinates that can follow pen-positioning commands, like PA, is limited only by the memory in the display. Some graphics are drawn more effectively with the PR command, especially when the same object appears in more than one position on the display. Use PA to position the object on the display, then use PR to draw the object.

The following example shows how to draw an identical box using first the PA command and then the PR command.

Creating Graphics



Draw a Rectangle with PA or PD

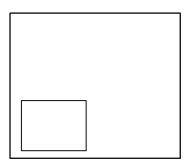
Carriage-return/line-feed

PA and PR commands are followed by a series of X-Y coordinate pairs. If several program lines are used to specify coordinate pairs, carriage return and line feeds must be suppressed at the end of each program line. Including these characters between X-Y coordinate pairs terminates the PA or PR commands before the entire list of coordinate pairs is processed.

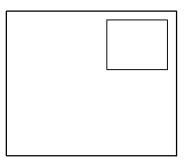
The next example shows one way to move the rectangle to different positions on the display.

Reposition the Rectangle

The OSA draws different types of lines, which are specified by the line-type command, LINET. Once the line type is specified, all subsequent lines are drawn with that type. The following example draws rectangles with different line types.


The OR command offsets the position of graphics on the display relative to P_1 , in the current scale units. The programs below draw a box. In the first example, the box is drawn without any offset. In the second, the box is offset 500 units in the X and Y directions.

```
120 OUTPUT 723; "PU; PA 0,0; PD; "
```


Place pen down at 0,0.

Creating Graphics

130 OUTPUT 723; "PA 0,400,400,400,00,0,0;" Draw to coordinates X1, Y1, X2, Y2, X3, Y3, X4, Y4.

Draw Box Without Offset

Draw Box With Offset

To create a drawing

- Use the PU and PD commands to turn on or off the pen.
- Use PA to position the pen.
- Use PA and PR to draw the object.
- Use LINET to select the type of line (solid, dotted, or dashed.)

Drawing Grids

The GRID command draws a grid anywhere on the display. GRID specifies the size and number of squares forming the grid. Use the PA command to position the lower-left corner of the grid. LINET and PEN may be used to modify the grid lines. The following example places a five-division-by-four-division grid in the upper right quadrant of the display. (GRID does not work after <code>DWINDOW ON</code> is executed.)

```
100 OUTPUT 723; "PU; PA 500,500; PD;" Position pen at center of display.
110 OUTPUT 723; "GRID 100,125,5,4;" Draw 5 by 4 division grid.
```

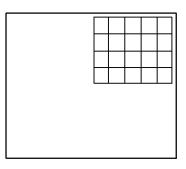
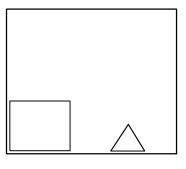


Illustration of the Drawn Grid

Drawing Graphics Items


The item command, IT, activates the special graphics mode where groups of graphics commands are assigned to an *item* number. These items can then be redrawn or modified without reexecuting the individual graphics commands. This is useful when a graphics item needs to be blanked and redrawn, changed, recolored, or repositioned at a later time. Executing IT assigns a series of graphics commands to an item number ranging from 1 to 50. The following program lines create items 1 and 2.

```
      120
      OUTPUT 723; "IT 1;"
      Assign box item number 1.

      130
      OUTPUT 723; "PA 0,0,0,400,400,400,00,0;"
      Draw box.

      140
      OUTPUT 723; "IT 2;"
      Assign triangle item number 2.

      150
      OUTPUT 723; "PA 600,0,700,200,800,0,600,0;"
      Draw triangle.
```


Graphics Items 1 and 2

Turning off IT mode

To turn off the special graphics mode entered with the IT command, you must execute one of the following commands: IT O, IP, DELETE, or CLRDSP.

Drawing Graphics Items

The item command, IT, can be used to display line drawings, text, grids, or markers. These tasks are shown in the following table.

			-		
- 1	tρ	m	- Io	•	

Task	Command
Draw lines	PA, PR
Display traces	GRAPH
Draw grids	GRID
Display text	TEXT, DSPLY
Display graphics marker	MK

A single item can be assigned to do only one task. For example, a single item cannot draw a box and display text. In this case, two items are required: one for the box, another for the text. Mixing item types generates a display error, indicated by "E" in the display status box.

In previous chapter examples, graphics were positioned with the PA and PR commands and were drawn by placing the pen down with the PD command. The IT mode differs in that each item has its own pen, which is automatically in the down position. Thus, a pen-down command (PD) is not required. Also, in IT mode, graphics are positioned with the OR command without the use of the PU or PD. Their shape, color, and appearance (or disappearance) is further modified by a variety of commands. For example, consider the following lines that draw a grid using normal graphics techniques:

```
100 OUTPUT 723; "PU; PA 500,500; PD; " 110 OUTPUT 723; "GRID 100,125,5,4;"
```

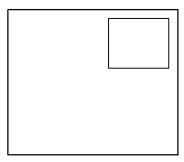
The same grid can be drawn using IT (OR positions the grid; PD is not needed.)

```
110 OUTPUT 723;"IT 1; OR 500,500;"
110 OUTPUT 723;"GRID 100,125,5,4;"
```

The pen starts at the item origin when the item is first drawn. The origin of the item is 0,0 unless specified otherwise with the OR command. If the origin is changed, the entire item moves. Notice that when the reference-graphics mode is off (IT 0), graphics are always drawn at the current pen position and can never be moved.

An item can be redrawn or modified whenever it is active. Only one item can be active at a time. The active item is determined by the last executed IT command. The following table shows commands that modify items:

Commands that Modify Items


Description	Command
Blank item.	VW OFF view item off
Redraw item.	VW ON view item on
Offset item position.	OR origin
Change item shape.	TP tablet pointer
Stop display of item and delete from memory.	DELETE delete item

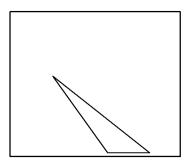
In the following example, item 1 is activated, blanked, and then redrawn. Notice that it is not necessary to execute the PD command or reexecute the individual graphics commands assigned to the item.

```
160 OUTPUT 723;"IT 1;" Activate item.
170 OUTPUT 723;"VW 0FF;" Blank item.
180 OUTPUT 723;"WAIT 5;" Pause program to view display.
190 OUTPUT 723;"VW ON;" Redraw item.
```

Use the OR command to move an item on the display.

```
160 OUTPUT 723;"IT 1;" Activate item 1.
170 OUTPUT 723;"OR 500,500;" Offset item 1.
```


Moving Graphics Items


Drawing Graphics Items

The TP (tablet pointer) command modifies item shapes. The TP command may be thought of as a tablet pointer that selects one of the X-Y coordinates of a graphics item for modification. For example, consider item 2, the triangle, which is defined by four coordinates, numbered 0 through 3:

```
Point 0 Point 1 Point 2 Point 3 |600,0| |700,200| |800,0| |600,0|
```

Executing TP 1 selects (700,200) for modification. (TP begins counting with zero.) The new coordinate is specified with the plot absolute command, PA, that follows the TP command. In the program below, point 1 of the triangle is modified.

```
160 OUTPUT 723; "IT 2;" Activate item.
170 OUTPUT 723; "TP 1;" Select point.
180 OUTPUT 723; "PA 300,600;" Specify new point value.
```


Modify Shape of Item

Any modification made with OR, VW, or TP become permanent characteristics of the item unless the item is remodified or deleted with the DELETE or CLRDSP command.

To use a graphics item

- 1. Create graphics items using the IT command, specifying item numbers from 1 to 50.
- 2. Activate selected items with the IT command.
- 3. Modify selected items with the VW, OR, TP, or DELETE commands.

To delete a graphics item

• DELETE blanks an active item and clears it from memory.

```
160 OUTPUT 723;"IT 1;" Activate item.
170 OUTPUT 723;"DELETE; Delete item.
```

• CLRDSP blanks and deletes all items, regardless of their state.

```
400 OUTPUT 723; "CLRDSP;" Delete all items.
```

Displaying Text

Use TITLE and TEXT to display messages.

Messages may be written with the TITLE and TEXT commands. The TITLE command is the easiest way to write text. TITLE automatically places the pen down and positions text in the title line, located at the top of the display. The following example writes a message. Delimiters (\$) mark the beginning and end of the message and must be different from any characters in the message. For a complete list of valid delimiters, refer to the "Syntax Diagram Elements" table in the introduction to Chapter 7. To erase the title, execute IP or TITLE\$\$. Executing CLRDSP does not erase the title line.

The TEXT command places messages (up to 35 characters) anywhere on the display. Use PA to position the pen, then use PD to place the pen down. (TEXT does not work after DWINDOW ON is executed.)

Use escape characters to enhance text.

You can enhance any text you write on the screen by using the following control and escape characters. Place these codes and characters within the label functions, or with any function that defines a string of text between delimiters, such as TITLE, TEXT, KEYDEF, or ACTDEF programming commands. Use the following codes to position the pen, clear or move text, or sound a beep.

Control Codes

ASCII Code	Function	Description
7	beeper $ B_{\mathbf{L}} $	Sound beep.
8	back space $ B_{\mathbf{S}} $	Move pen back by one character width.
12	form feed $ F_{\mathbf{F}} $	Clear line of text, then move pen to left side of line.
13	carriage return $ C_{f R} $	Move pen to left side of display, to beginning of line.
27	escape $ E_{\mathbf{C}} $	Use with functions listed in following tables.

In the following table, $E_{\rm C}Y$, turns on the display-function mode. When the display-function mode is on, the control codes and characters are displayed in the label; their associated functions (inverse video, underlining, and so on) are not executed, with the exception of carriage return and line feed, which are executed. When the mode is off, the code and character functions are executed instead of displayed. The mode is off when a label is created. When

a label is assigned a non-zero number with the IT command, the mode is on, and E_CY and E_CZ have no effect.

The table also shows character sequences used to enhance text. The characters must be preceded by the ASCII code for escape (27) and "&". All characters and codes must be entered between the delimiters of the label function, which must be assigned a non-zero item number. (Refer to the IT programming command.)

Escape Characters that Control the Pen. Clear Text, and Scroll Text

Character ¹	Description	
$E_{\mathbf{C}}C$	Move pen right by one character.	
$E_{\mathbf{C}}G$	Move pen to the left side of the display carriage return .	
$E_{\mathbf{C}}K$	Clear to the end of the line.	
$E_{\mathbf{C}}Y$	Turn on the display-function mode.	
$E_{\mathbf{C}}Z$	Turn off the display-function mode.	
$E_\mathbf{C} \&d A$	Turn on blinking.	
$E_\mathbf{C}\&Db$	Turn on inverse video.	
$E_{\mathbf{C}} \&d C$	Turn on inverse video and blinking.	
$E_{\mathbf{C}} \&d D$	Turn on underline.	
$E_\mathbf{C}$ & d E	Turn on underline and blinking.	
$E_\mathbf{C}\&dF$	Turn on underline and inverse video.	
$E_\mathbf{C} \&d G$	Turn on underline, inverse video, and blinking.	
E _C &d@	Turn off enhancements.	
${\sf E_C} \& {\sf v\#S}^2$	Selects color of text # is between 1 and 15.	
${\sf E}_{\sf C}$ & v-# ${\sf S}^2$	Selects color of text background # is between 1 and 15.	
E_{C} &v0S 2	Resets to default color of text.	

 $^{1~{\}rm E_{C}}$ indicates ASCII code for escape |27|.

Choose the color you want.

On HP 70004A displays, color text is available using the PEN programming command. To select the color, issue the PEN command before using the TITLE or TEXT command. The selected color applies to all subsequent text. To change the color of specific text within the text string, use the escape codes that are listed in the previous table. The escape-character sequence must be entered between the delimiters of the label function, which must be assigned a non-zero item number. (See IT programming command.) Colors can be selected with the escape sequence up to three times for each

² Valid for color displays only.

Displaying Text

label. Pen colors are not available on the HP 70205A or HP 70206A displays. Sending pen-color escape sequences to the HP 70205A or HP 70206A displays causes errors. The default PEN colors for the HP 70004A display are shown in the following table:

Default Color Assignments for HP 70004A Display

Pen Number	Default Color ¹	Display Assignment
1	gray	GRATICULE
2	yellow	TRACE A
3	light blue	TRACE B
4	light red	TRACE C
5	green	LINES
6	bright white	TITLES
7	gray	ANNOTATION
8	orange	ADVISE text
9	red	ERRORS
10	bright white	MARKERS
11	white	softKEY LABELS
12	white	
13	red	
14	green	
15	blue	
16	black	BACKGROUND

1 Color can be adjusted using (DISPLAY) menus.

To display text

• Use the TITLE command to write text in the title area.

20 OUTPUT 723; "TITLE \$Your Message Here\$;"

• Use the TEXT command to write text at any display location.

To erase text

- Execute CLRDSP to text written with the TEXT command.
- Execute TITLE\$\$ to blank text written with the TITLE command.
- Assign the text to an *item* and blank the item.

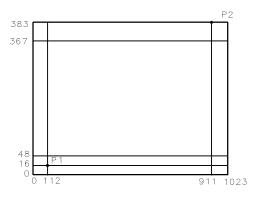
Refer to "Drawing Graphics Items" in this chapter.

Displaying Variables

Variables are displayed by using the display-variable command, DSPLY. DSPLY specifies the field width (number of characters) and decimal places of the displayed variable. When specifying the field width, be sure to account for the greatest number of characters that will be displayed, including the sign and decimal point. DSPLY places the variable at the current pen position.

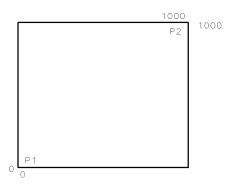
To display a variable

• Use DSPLY to display values of variables.

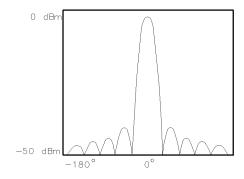

```
110 OUTPUT 723; "PU; PA 500,700;"
120 OUTPUT 723; "DSPLY CENTERWL, 12, 0;"
```

To erase displayed variables

• Execute CLRDSP to blank variables written with the TEXT command.


Changing the Scale

Graphics are drawn in the OSA window on the display, usually 800 dots wide by 384 dots high. Most graphics are drawn between the lower-left position, P_1 , and the upper right position, P_2 , when the OSA has been assigned the full screen as shown in the following figure. P_1 is located at the left edge of the graticule, just above the data line. P_2 is located at the right edge of the graticule at the top of the display.


Default Positions for P_1 and P_2

The scale of the coordinates that P_1 and P_2 define has a preset value of 0,0 and 1000,1000. Most graphics commands position the pen according to the scale between P_1 and P_2 . Graphics can be drawn outside the window, but this is not recommended.

Default Scale for P_1 and P_2

The scale for P_1 and P_2 may be changed from its preset value to any values between -32,768 and +32,767. Below, SCALE changes the X and Y coordinates to new terms in decibel and degree units to illustrate an antenna pattern adjustment.

Set Scale in Terms of Degrees and Decibels

The SCALE command defines X-Y coordinates in integer values only. When redefining the scale, use numbers large enough to give adequate resolution. Units greater than 50 are recommended. The **build window** softkeys also change the scale of P_1 and P_2 .

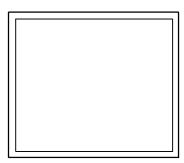
The following table list the commands that are affected by the SCALE command.

Commands Affected by the SCALE Command

Command	and Description	
DSPLY	Display variable	
GRAPH	Graph trace	
GRID	Display grid	
MK	Display marker	
OR	Set origin	
PA	Plot absolute value	
PR	Plot relative value	
TEXT	Display text	

Using Graphics Windows

Two window commands are provided for drawing on a limited and controlled area of the display: IWINDOW and DWINDOW. Use IWINDOW (instrument window) to increases or decreases the area on the screen dedicated to displaying OSA measurement results. Use DWINDOW to create a graphics window for drawing. DWINDOW cannot be used when displaying variables, grids, or text with the DSPLY, GRID, or TEXT commands.


Reducing the size of the graticule using IWINDOW leaves more room for messages and other graphics at the sides of the display screen.

Create a reduced display window using the following program.

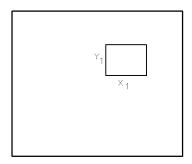
```
20 CLEAR 723;
30 OUTPUT 723; "IP; SNGLS; TS; ANNOT OFF; "
40 OUTPUT 723; "SP 10NM;"
                                                     Set span.
60 OUTPUT 723; "IWINDOW 1000,800;"
                                                      Reduce display area for mea-
                                                     surement results.
70 OUTPUT 723; "PU; PA 0, 955; PD; "
                                                      Position pen.
80 OUTPUT 723: "TEXT$SIGNALS FOUND: $:"
                                                      Write text.
90 !
100 FOR N=1 TO 3
110 OUTPUT 723; "CENTERWL "; (N*300); "NM; TS;"
                                                     Set center wavelength. Sweep
120 OUTPUT 723; "MKPK HI;"
                                                     Mark highest signal level.
130 OUTPUT 723; "PU; PA 20, "; (955-N*45); "; PD; "
                                                     Position pen.
140 OUTPUT 723; "DSPLY "; N; ", 3, 0; "
                                                     Label signal.
150 OUTPUT 723: "TEXT $AMPLITUDE = $:"
160 OUTPUT 723; "DSPLY MKA, 6, 1;"
                                                     Print amplitude.
170 OUTPUT 723; "TEXT$ dBm$;"
180 NEXT N
```

The DWINDOW command creates a graphics window on the display. The window has a coordinate system that you specify. Use the window for viewing re-sized measurement results, graphics, or traces. DWINDOW first specifies the physical size of the window in the current scale units. (As before, current scale units are either default values of 0 to 1000 for X and Y coordinates, or are specified by the SCALE command.) DWINDOW then defines a scale for the new coordinate system *within* the window. For example, the following program lines draw two boxes. One box is on the default coordinate system. The other box (using the same coordinates) is

placed on a window created by the DWINDOW command. Since the sides of the box are still 1000 units long, it outlines the limits of the window.

Use OR to position the window anywhere on the display. The OR command offsets coordinates of the window in the current scale units, as defined by the SCALE command.

```
      100
      OUTPUT 723; "PU;PA 0,0;PD;"
      Draw box.


      110
      OUTPUT 723; "PA 0,1000,1000,1000,0,0,0;"
      Define window size.

      120
      OUTPUT 723; "DWINDOW 400,400,0,2000,0,2000;"
      Offset window position.

      130
      OUTPUT 723; "PU;PA 0,0;PD;"
      Redraw box.

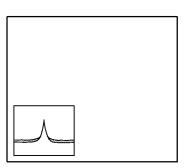
      150
      OUTPUT 723; "PA 0,1000,1000,1000,0,0,0;"
```

Using Graphics Windows

DWINDOW is especially useful for displaying traces. Trace A is reproduced below in a window.

```
140 OUTPUT 723; "DWINDOW 400,400,0,1000,0,1000;"
```

150 OUTPUT 723; "PU; PA 0,0; PD; "


160 OUTPUT 723; "PA 0,1000,1000,1000,1000,0,0,0;"

170 OUTPUT 723; "DWINDOW 400,400,TRA;"

180 OUTPUT 723; "GRAPH TRA;"

Draw box to outline trace.

Define window size and contents. Display trace A.

Display Trace Data within a Graphics Window

10 OUTPUT 723; "DWINDOW OFF;"

To reduce the display area

• Use the IWINDOW command.

```
100 OUTPUT 723; "IWINDOW 1000,800;"
```

The example above defines reduces the window's height from 1000 units to 800 units. The window's default height and width is 1000 units.

To create a graphics window

• Use the DWINDOW command to define the size of the window and its scale.

The following line defines a window at the current pen location. The window is 400 units wide and 300 units high. Its scale is 1000 units per side.

```
10 OUTPUT 723; "DWINDOW 400,300,0,1000,0,1000;"
```

To place a trace in a window

• Use the DWINDOW command. GRIG

The following program line creates a widow with a reduced height. Trace A is assigned to the window.

```
10 OUTPUT 723; "DWINDOW 1000, 400, TRA;"
```


6

Creating Downloadable Programs

Creating Downloadable Programs

This chapter tells how to store a series of commands in internal memory to form new, custom-made commands or user-defined functions called downloadable programs (DLPs). The looping and conditional constructs, REPEAT/UNTIL and IF/THEN/ELSE, and the interrupt functions, ABORT and RETURN, are also described.

DLPs have many applications. They are ideal for repetitive measurements, and make it possible to conduct complicated measurements with the press of a single front-panel key.

When a DLP is operating, HP-IB operation is not suspended. This leaves the computer free to control other devices on the bus while the OSA measures, processes, and stores data.

In addition, the operation of DLPs does not require a computer; the functions can be activated with the OSA keys. This is useful for smaller test systems, where custom keys help create a friendly user interface to simplify test procedures.

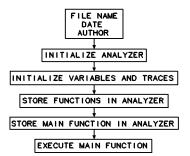
		c.
Contents	Creating a Downloadable Program (DLP)	
	To store a function	6-7
	To confirm a function is stored	6-7
	Creating an Active User-Defined Function	6-8
	Branching, Looping, and Interrupting	
	To use a conditional branch	
	To use a looping construct	6-11
	To abort loops and user-defined functions	
	Executing User Defined Functions	6-12
	To assign a function to the USER menu	
	To execute a function via computer	
	To execute a function via front-panel keys	
	Building (USER) Menus	
	To assign a function to the (USER) menu	6-17
	To build interactive menus	
	Avoiding Illegal Recursion	
	Controlling Instruments Over HP-IB	
	To control instruments over UD IR	

Creating a Downloadable Program

The FUNCDEF (define function) command consolidates a series of OSA commands into one operation and gives it a name. Executing the function name is the same as executing the series of commands contained in the function.

Reserved Words

Do not use the reserved words (as listed in Chapter 8 of this manual) as DLP names. Using reserved words interrupts the defining process and executes the invoked function. For example, if a DLP is named "ALL," the reserved word would disrupt the operation of any function modified by ALL, such as DISPOSE ALL.


Any names created by the VARDEF, ACTDEF, TRDEF, or FUNCDEF commands become reserved words until they are erased from internal memory.

A function must be *stored* in internal memory before it can be *executed*. In the example below, the FUNCDEF command stores a DLP named HIGH_PEAK in internal memory. Notice the matching delimiter characters (@) mark the beginning and end of a command series assigned to HIGH_PEAK.

```
10 CLEAR 723
20 OUTPUT 723; "IP; ";
30 OUTPUT 723; "FUNCDEF HIGH_PEAK, @";
40 OUTPUT 723; "STARTWL 700NM; STOPWL 1200NM; ";
50 OUTPUT 723; "TS; MKPK HI; ";
60 OUTPUT 723; "@; "
```

The simplest way to store new functions in internal memory is with a computer program. However, if you have the auxiliary HP-HIL keyboard, you can easily store DLPs without the use of a computer.

The following figure illustrates a program structure that simplifies the process. The model simplifies debugging and documentation, and conserves memory.

Program Structure for Storing DLPs to Internal Memory

In the model, the first part tells what the program does and gives other appropriate information such as the author's name, the date, and a file name.

The second part initializes the OSA in order to form a good starting point for measurements. CLEAR 723 and IP set the OSA to a known state. DISPOSE ALL clears internal memory to maximize storage space for functions, variables, and traces. (Omit DISPOSE ALL if you do *not* wish to erase all of internal memory.)

The third part defines all user-defined variables and traces that are utilized by any of the user-defined functions, specifying a size for each trace and a value for each variable. To avoid memory-overflow problems, define variables and traces apart from any user-defined functions. For instance, if the user-defined function allocates memory for several trace arrays, memory is not allocated to the traces until the function has been executed. Thus, if the amount of available internal memory is checked with the MEM? command or the <code>catalog & MSI</code> softkey before the function has been run, the value returned or displayed accounts only for the space occupied by the function, not for the space occupied by the function <code>plus</code> the traces.

The fourth part is reserved for user-defined functions that are incorporated into and executed by a main user-defined function, which is the last part of the program. When a series of commands are consolidated in a function, they can be executed many times, even though they are stored in the OSA only once. This conserves memory and simplifies programming.

Creating a Downloadable Program

The following example illustrates this program structure. Note that the sub-function called VIEW_SIGNAL is executed twice in the main function, SCAN.

```
10 !File Name: Peaks Date: 4/1/91 Author: Name
20 !View the largest signal in two ranges using narrow span.
30 !Store the amplitude of the largest signal in each range.
    CLEAR 723
                                                                     Initialize OSA.
     OUTPUT 723; "IP; SNGLS; TS; ";
50
60
     OUTPUT 723; "DISPOSE ALL; ";
                                                                     Erase internal memory.
70
     OUTPUT 723; "VARDEF AMP_A,0;";
80
     OUTPUT 723; "VARDEF AMP_B,0;";
90
     ! Store sub-function in internal memory.
100 OUTPUT 723; "FUNCDEF VIEW_SIGNAL, 0";
                                                                     Begin definition of VIEW_SIGNAL function.
110 OUTPUT 723; "TS; MKPK HI; MKTRACK ON; TS; SP 100NM; ";
                                                                     Place marker on largest signal and view
                                                                     it with narrow span width.
120 OUTPUT 723; "@;";
                                                                     End definition.
130 ! Store main function in internal memory.
140 OUTPUT 723; "FUNCDEF SCAN, @";
                                                                     Begin definition of SCAN function.
150 OUTPUT 723; "IP; ";
                                                                     Set measurement range.
160 OUTPUT 723; "STARTWL 600NM; STOPWL 1000NM; ";
170 OUTPUT 723; "VIEW_SIGNAL;";
                                                                     Execute function that marks the highest
                                                                     signal and narrows span.
180 OUTPUT 723; "MOV AMP_A, MKA; ";
                                                                     Store marker amplitude in a variable.
190 OUTPUT 723; "WAIT 2;";
200 OUTPUT 723; "STARTWL 1000NM; STOPWL 1700NM; ";
                                                                     Select new wavelength range.
210 OUTPUT 723; "VIEW_SIGNAL; ";
                                                                     Execute function that marks the highest
                                                                     signal and narrows the span.
220 OUTPUT 723; "MOV AMP_B, MKA; ";
                                                                     Store marker amplitude in a variable.
230 OUTPUT 723; "0;";
                                                                     End definition.
240 ! Execute main function.
250 OUTPUT 723; "SCAN;"
```

260 END

To store a function

- Write the FUNCDEFs using short program lines.
- Indent program lines to mark sub-functions and points of looping and branching.
- Use descriptive labels for variables, functions, and traces (memory space permitting).
- Define all variables and traces at the beginning of the program, not within a FUNCDEF definition.
- Use recommended syntax shown in the Language Reference chapter.
- Use output statements to send the FUNCDEFs and variables to the OSA.

To confirm a function is stored

- 1. Press (MENU), Misc, and then MORE 1 of 3.
- 2. Press catalog & MSI.
- 3. Press INTERNL MEMORY.

The catalog of internal memory should now be displayed.

4. If the user-defined function was stored, it will be listed in the catalog.

For each stored article, the catalog gives the name of the article, followed by AFUNC or FUNC (for active or ordinary user-defined functions, respectively) and the size in bytes.

Creating an Active User-Defined Function

The ACTDEF command creates a user-defined function that operates like an active function. Active functions have the following characteristics:

- Their current value is displayed in the active-function readout.
- Their value can be changed with front-panel keys.
- Their value is expressed as a variable for operations with other OSA functions. For example, if ACTDEF creates a function called XXXX, the variable XXXX can be used wherever *predefined variable* appears in the syntax charts.

Like the FUNCDEF command, ACTDEF consolidates a series of OSA commands into one function and gives it a name. Executing the function name is the same as executing the series of commands contained in the function.

In the following example, the function is assigned to a USER key. Pressing the key executes the function. Active user-defined functions can also be executed with other functions, or used in computer programs as you use any other OSA command.

```
60 OUTPUT 723; "ACTDEF NEW_SPAN, 10, NM";
                                                Begin definition of NEW_SPAN, that
                                                has an initial value of 10 nm.
70 OUTPUT 723; "@MPY SP, 2, NEW_SPAN@"
                                                Multiply NEW_SPAN by 2, then set
                                                span equal to the product. End defi-
                                                nition and store the function.
80 OUTPUT 723; "KEYDEF 3, NEW_SPAN;"
                                                Assign function to a \overline{\text{USER}} key.
90 OUTPUT 723; "VARDEF YY,0;"
                                                Create a user-defined variable, YY.
100 OUTPUT 723; "MOV YY, NEW_SPAN;"
                                                Set variable equal to NEW_SPAN.
110 OUTPUT 723; "NEW_SPAN?"
                                                Return value of NEW_SPAN to computer.
120 ENTER 723; N
                                                Assign value to computer variable.
```

In addition to creating a user-defined function, the ACTDEF command creates a temporary variable that has the same name as the user-defined function. The variable can be used for operations as you would use any predefined variable. The variable exists as long as the user-defined function is stored in internal memory. Do not use existing user-defined function names or reserved words as labels for user-defined functions.

When using a string- or block-data field to transfer a command definition, be sure to use compatible terminators. Also, any block-field commands within the list must be the absolute type (A# block).

Branching, Looping, and Interrupting

Use the IF/THEN/ELSE, REPEAT/UNTIL, ABORT, and RETURN commands to add decision-making, looping, or interrupt capability to user-defined functions.

The ABORT command stops the execution of all user-defined functions and interrupts the operation of repeat loops. If ABORT is encountered in a function that has been executed by pressing a key, the function is interrupted and front-panel control is returned.

If the function is activated by a computer program, ABORT resumes program operation at the first OSA command following the function. When, in addition, the function is nested within one or more user-defined functions, ABORT resumes program operation at the first OSA command following *all* of the user-defined functions.

The RETURN command stops the operation of the currently executing user-defined function, and returns to the point where the function was originally encountered.

The following example contains a user-defined function, PROGRAM_1, nested within another function, PROGRAM_2, which itself is nested within another function PROGRAM_3. Since none of the functions contain ABORT, executing PROGRAM_3 executes all three sequentially.

```
5
    CLEAR 723
                                                                 Initialize OSA.
    OUTPUT 723;"IP;"
    OUTPUT 723; "TRDSP TRA, OFF; "
    OUTPUT 723; "ANNOT OFF; GRAT OFF; "
     OUTPUT 723; "VARDEF YY, 0;"
     OUTPUT 723: "FUNCDEF PROGRAM 1. ^":
                                                                Define PROGRAM_1.
     OUTPUT 723; "REPEAT;";
70
80
     OUTPUT 723; "ADD YY, YY, 100; ";
90
     OUTPUT 723; "PU; PA 100, YY; PD; ";
100 OUTPUT 723; "DSPLY YY, 4, 0;";
     OUTPUT 723; "IF YY, EQ, 300; THEN; ENDIF; ";
     OUTPUT 723; "UNTIL YY, EQ, 400; ";
130
     OUTPUT 723; "^; "
140
150
160 OUTPUT 723; "FUNCDEF PROGRAM_2,";
                                                                Define PROGRAM_2.
```

Branching, Looping, and Interrupting

```
170
    OUTPUT 723; "^PROGRAM_1; TEXT@INSIDE PROGRAM_2@;";
                                                               Execute PROGRAM_1 and write "INSIDE PRO-
                                                               GRAM 2."
180
     OUTPUT 723; "^;";
185
190 OUTPUT 723; "FUNCDEF PROGRAM_3,";
                                                               Define PROGRAM_3.
200 OUTPUT 723; "^PROGRAM_2; TEXT@INSIDE PROGRAM_3@;";
210
     OUTPUT 723; "^;";
     OUTPUT 723; "PROGRAM_3; ";
220
                                                               Execute PROGRAM_3. When all three user-
                                                               defined functions have been executed, go to line
                                                               230.
225
230
     OUTPUT 723; "PU; PA 300, 200; ";
     OUTPUT 723; "TEXT@OUTSIDE USER-DEFINED FUNCTIONS@;"
```

What if in the program above, line 110 were modified to include the ABORT command in the PROGRAM_1 function?

```
110 OUTPUT 723; "IF YY, EQ, 300; THEN; ABORT ; ENDIF; ";
```

When ABORT is encountered, the PROGRAM_1 function is interrupted, the PROGRAM_2 and PROGRAM_3 functions are ignored, and the OSA commands following PROGRAM_3 are executed. Program operation resumes at line 230.

To use a conditional branch

• Use the IF/THEN/ELSE command

This example shows multiple conditional branching. If MKA is greater than -10 dBm or less than -30 dBm, the value of MKA is displayed. Otherwise, the message "SIGNAL WITHIN TOLERANCE" is displayed.

```
50 OUTPUT 723; "IP; CENTERWL 900NM; SP 400NM; ANNOT OFF; SNGLS; TS; MKPK HI;"
60 OUTPUT 723; "IF MKA,GT,-10DBM; THEN; DSPLY MKA,6,2;"
70 OUTPUT 723; "ELSIF MKA,LT,-30DBM; THEN; DSPLY MKA,6,2;"
80 OUTPUT 723; "ELSE TEXT$SIGNAL WITHIN TOLERANCE$;"
90 OUTPUT 723; "ENDIF;"
```

To use a looping construct

Use the REPEAT/UNTIL command

In this example, repetition is controlled with a user-defined variable, N, which incrementally increases each time the loop is repeated. The example stores the amplitudes of the three largest signals in the first three elements of a trace array. In addition, N doubles as a pointer that specifies where data is stored in the trace array.

```
CLEAR 723
                                                      Initialize OSA.
20 OUTPUT 723;"IP;"
30 OUTPUT 723; "STARTWL 750NM; STOPWL 1450NM;"
                                                      Activate single-sweep mode and
40 OUTPUT 723; "SNGLS; TS; "
50 OUTPUT 723; "DISPOSE ALL;"
                                                      Clear internal memory. (Op-
                                                      tional—see "Memory" section
                                                      in this chapter.)
60 OUTPUT 723; "TRDEF TR_AMP, 10; "
                                                      Define 10-element trace, TR_AMP.
70 OUTPUT 723; "VARDEF N,0;"
                                                      Define variable, N, equal to 0.
80 OUTPUT 723; "MKPK HI; "
                                                      Place marker on highest peak.
90 OUTPUT 723; "REPEAT; "
                                                      Begin repeat loop.
100 OUTPUT 723; "ADD N, N, 1;"
                                                      Add 1 to N.
110 OUTPUT 723; "MKPK NH;"
                                                      Move marker to next highest
                                                     peak.
120 OUTPUT 723; "MOV TR_AMP[N], MEASU MKA; "
                                                     Store amplitude in nth ele-
                                                      ment of trace.
130 OUTPUT 723; "UNTIL N, EQ, 3; "
                                                      Mark end of repeat loop. Loop-
                                                      ing ends when N equals 3.
```

To abort loops and user-defined functions

- Use the ABORT command to continue at the next commands after the function.
- Use the RETURN command to continue from the point at which the current function was called.

Executing User-Defined Functions

After storing a user-defined function in internal memory with the FUNCDEF or ACTDEF command, execute the function from a computer or with the front-panel controls. To recall a function from external memory to internal memory, use the LOAD or RCLD command.

If you want your downloadable program to automatically appear in the USER menu, the name of the main FUNCDEF must end in a single underscore character.

Use execute DLP with caution.

The execute DLP softkey allows you to select and start a FUNCDEF. However, use caution because the function lists all FUNCDEFs—even those that are subroutines and do not run properly as stand-alone programs. To prevent a FUNCDEF from being listed by execute DLP, end the FUNCDEF's name with two underscore characters.

To assign a function to the USER menu

• End the name of the main FUNCDEF with a single underscore character.

To execute a function via computer

• Use an output statement to send the function name as you would any OSA command.

Be sure to terminate the function name with a semicolon. For example, to execute a user-defined function named HIGH_PEAK:

10 OUTPUT 723; "HIGH_PEAK;"

To execute a function via front-panel keys

- 1. Press (MENU) and then Misc.
- 2. Press MORE 1 of 3.
- 3. Press execute DLP.

The **execute DLP** softkey lists all user-defined functions stored in internal memory (except those whose name ends in two underscore characters).

4. Press a key to execute its function. The LOAD or RCLU command recalls stored (USER) key files.

Building USER Menus

The KEYDEF and READMENU commands allow you to build complex interactive menus for your user-defined functions. Keys that you create are displayed by pressing the (USER) key. Up to 14 keys can be displayed at one time in the (USER) menu. The keys are numbered 1 through 14, keys 1 and 8 occupying the upper right and left corners, respectively. The following example, the HIGH_PEAK function is assigned to softkey 7 and labeled "FIND PEAK." To execute the HIGH_PEAK function, press (LOCAL), (USER), FIND PEAK.

10 OUTPUT 723; "KEYDEF 7, HIGH_PEAK, \$FIND PEAK\$;"

Use the READMENU command to create interactive (USER) key menus. In the following example, READMENU works with the IF/THEN/ELSE commands to build a (USER) key menu that activates three different wavelength ranges, called bands A, B, and C. Whenever a key is pressed, the READMENU command transfers the key number to a user-defined variable. The IF/THEN/ELSE commands then test the key number and activate the associated function. The REPEAT/UNTIL commands repeat the key-testing process until the exit key is pressed.

```
10
    CLEAR 723
20
   OUTPUT 723; "IP; DISPOSE ALL;"
40 OUTPUT 723; "FUNCDEF BANDA, @STARTWL 600NM; STOPWL 900NM; @;"
                                                                      Band A.
50 OUTPUT 723; "FUNCDEF BANDB, @STARTWL 900NM; STOPWL
                                                                       Band B
1200NM;@;"
60 OUTPUT 723; "FUNCDEF BANDC, @STARTWL 1200NM; STOPWL
                                                                       Band C
1700NM:@:"
70 !
80 OUTPUT 723; "VARDEF KEY, 0;"
                                                                       Variable for storing key number.
90 OUTPUT 723; "VARDEF END_LOOP,0;"
                                                                       Declare variable for monitoring REPEAT
                                                                       loop.
100 !
110 OUTPUT 723; "REPEAT;"
                                                                       Begin repeat loop.
160 OUTPUT 723; "READMENU KEY, 1, $BAND
                                                                       Assign labels to \overline{\text{USER}} keys 1, 2, 3,
                                                                       and 14. Store pressed-key number in
A$,2,$BANDB$,3,$BANDC$,14,$EXIT$;";
                                                                       variable, KEY.
180 OUTPUT 723; "IF KEY, EQ, 1; THEN; BANDA;";
                                                                       Evaluate KEY to execute function.
190 OUTPUT 723; "ELSIF KEY, EQ, 2; THEN; BANDB; ";
200 OUTPUT 723; "ELSIF KEY, EQ, 3; THEN; BANDC; ";
210 OUTPUT 723; "ELSIF KEY, EQ, 14; THEN; MOV END_LOOP, 1; ";
                                                                       When key 14 is pressed, END_LOOP
                                                                       contains a "1" and ends repeat loop.
220 OUTPUT 723;" ENDIF;";
230 OUTPUT 723; "UNTIL END LOOP, EQ, 1; "
```

240 END

With further use of the READMENU, KEYDEF, and FUNCDEF commands, you can assign a <u>USER</u> key menu to a <u>USER</u> key that can be activated by yet another <u>(USER</u> key, thus creating multilevel menus. The above example has been altered slightly in the next example to demonstrate one way of assigning a menu to another <u>(USER</u>) key. The entire program algorithm is incorporated into a user-defined function, which in turn is assigned to a single <u>(USER</u>) key called <u>SELECT_SPAN</u>.

Building USER Menus

```
10 CLEAR 723
20 OUTPUT 723; "IP; DISPOSE ALL;"
40 OUTPUT 723; "FUNCDEF BANDA, @STARTWL 600NM; STOPWL 900NM; @; "
50 OUTPUT 723; "FUNCDEF BANDB, @STARTWL 900NM; STOPWL 1200NM; @;"
60 OUTPUT 723; "FUNCDEF BANDC, @STARTWL 1200NM; STOPWL 1700NM; @;"
70 !
80 OUTPUT 723; "VARDEF KEY, 0;"
90 OUTPUT 723; "VARDEF END LOOP, 0;"
105 OUTPUT 723; "FUNCDEF SELECT_SPAN, @";
                                                                       Create SELECT_SPAN.
110 OUTPUT 723; "REPEAT;";
160 OUTPUT 723; "READMENU KEY, 1, $BAND A$, 2, $BAND B$, 3, $BAND
C$, 14, $EXIT$;";
170 !
180 OUTPUT 723; "IF KEY, EQ, 1; THEN; BANDA; ";
190 OUTPUT 723; "ELSIF KEY, EQ, 2; THEN; BANDB; ";
200 OUTPUT 723; "ELSIF KEY, EQ, 3; THEN; BANDC; ";
210 OUTPUT 723; "ELSIF KEY, EQ, 14; THEN; MOV END_LOOP, 1; ";
220 OUTPUT 723; "ENDIF; ";
230 OUTPUT 723; "UNTIL END_LOOP, EQ, 1; ";
232 OUTPUT 723; "MOV END_LOOP, 0;"
235 OUTPUT 723; "@; "
237 OUTPUT 723; "KEYDEF 7, SELECT_SPAN, $SELECT SPAN$;"
                                                                       Assign SELECT_SPAN to softkey 7.
240 END
```

To assign a function to the (USER) menu

• Use the KEYDEF command.

To build interactive menus

- 1. Create a variable for recording the softkey pressed.
- 2. Use the READMENU command to load variable with number of softkey pressed.
- 3. Use IF/THEN/ELSE statements to make decisions based on variable value.

Avoiding Illegal Recursion

Executing a user-defined function within the FUNCDEF command statement that defines it is an illegal recursion.

```
10 OUTPUT 723; "FUNCDEF SELECT_SPAN, @";
20 OUTPUT 723; "STARTWL 800NM; STOPWL 900WL;";
30 OUTPUT 723; "SELECT_SPAN;";
40 OUTPUT 723; "@;"
```

On the other hand, recursion is advantageous when creating *active* user-defined functions with the ACTDEF command.

```
60 OUTPUT 723; "ACTDEF NEW_SPAN, 500, nm,";

Begin definition of active, user-defined function, called NEW_SPAN, that has an initial value of 500 nm.

70 OUTPUT 723; "@MPY SP,2,NEW_SPAN; @"

Multiply NEW_SPAN by 2, then set span equal to the product. End definition and store the function.

80 OUTPUT 723; "KEYDEF 3, NEW_SPAN;"

Assign function to a USER key.

90 OUTPUT 723; "VARDEF YY,0;"

Create a user-defined variable, YY.

100 OUTPUT 723; "MOV YY, NEW_SPAN;"

Set variable equal to NEW_SPAN.
```

Controlling Instruments Over HP-IB

This section tells how to use the OSA as a controller on HP-IB. As a controller, the OSA transfers data to or accepts data from other HP-IB devices, thus expanding its measurement capability. For example, the OSA can control an HP-IB switch driver to select the correct optical input for measurement. Or, the OSA can control a power meter and signal source.

Use the OUTPUT command to send data to an HP-IB device located at a particular HP-IB address. Below, the OSA sends the message "SWITCH ON" to a device at HP-IB address 19.

```
10 OUTPUT 723; "OUTPUT 19, KL, $SWITCH ON; $;"
```

Data is sent as free-field ASCII numbers in three different output formats, called, K, KC, and KL. The K format sends data without a terminator. The KC format terminates the data with a carriage- return/line-feed. The KL format terminates data with a line-feed and EOI (end-or-identify). Use the format that is compatible with the HP-IB device receiving the data. Data may also be sent as non-ASCII numbers using the F format, which specifies the number of characters (field width) and decimal places.

Use the ENTER command to receive data from an HP-IB device. Below, ENTER receives a value sent by the device at HP-IB address 19 and stores the value in a user-defined variable in the OSA.

```
10 OUTPUT 723; "OUTPUT 19, KL, $CENTERWL?; $; "
Request center wavelength value.
20 OUTPUT 723; "ENTER 19, K, NN; "
Receive center wavelength value.
```

Three input formats for data are available: K for free-field ASCII numbers, B for bytes (8 bits), and W for words (2 bytes). Be sure to use an input format that is compatible with the output format of the HP-IB device. In the example below, the OSA sets the power of a source to the value of a variable. The message must be sent with several output statements, since one part of the message is a string of characters and another part is a OSA variable. Notice that a character string must be delimited.

```
10 OUTPUT 723; "OUTPUT 19,K,$PW $;" Send letters "PW" to the source.
20 OUTPUT 723; "OUTPUT 19,K,POWER_W;" Send current value of variable.
30 OUTPUT 723; "OUTPUT 19,KL,$WATTS;$;" Send letters "WATTS" to the source.
```

Before the ENTER and OUTPUT functions are executed, the computer must be disconnected from HP-IB. The OSA can control the HP-IB only if a

Creating Downloadable Programs

computer is not in control of the HP-IB. (Only one controller can control HP-IB at any time.) For this reason, ENTER and OUTPUT commands are incorporated into user-defined functions that are executed by the OSA with user-defined keys. This is accomplished by either physically disconnecting the computer from the bus, or by executing the HP-IB system-level commands that release the computer from HP-IB. The HP-BASIC command sequence that does this is shown below.

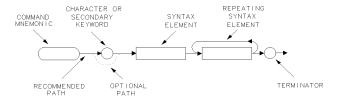
10 LOCAL 7 20 ABORT 7

The release HP-IB command (RELHPIB) must be included at the end of any user-defined functions containing ENTER or OUTPUT commands. This ensures that the OSA surrenders control of HP-IB after all ENTER and OUTPUT commands have been executed.

To control instruments over HP-IB

- Disconnect any computer from the bus.
- Use the OUTPUT command to send data to an instrument.
- Use the ENTER command to receive data from an instrument.

7


Language Reference

Language Reference

This chapter is organized alphabetically and documents each of the remote programming commands for the optical spectrum analyzer. Documented with each command is a syntax diagram, a program example, and a complete description.

Command syntax is represented pictorially as shown in the following figure.

- Characters enclosed by an oval are commands and their arguments and must be entered *exactly as shown*.
- Characters enclosed by a circle are separators or terminators and must be entered as shown.

Syntax-diagram elements are connected by solid and dotted lines. Any combination of elements generated by following the lines in the proper direction is correct syntactically. *Solid-line paths are recommended*.

The following two tables define the syntax diagram elements used in this manual.

Syntax Diagram Elements

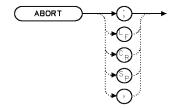
Syntax Component	Definition/Range	
analyzer command	Any spectrum-analyzer command in this chapter, with required parameters and terminators.	
character	S_{P} * - < = > @ ^ { } " ! " # \$ % & ' + , . / 0 1 2 3 4 5 6 7 8 9 : ; A B C D E F G H J K L M N O P Q R S T U V W X Y Z [\] ? ' a b c d e f g h i j k l m n o p q r s t u v w x y z _	
compatible function	Any spectrum-analyzer command in this chapter that operates on other functions.	
data byte	8-bit byte containing numeric or character data.	
data byte & EOI	8-bit byte containing numeric or character data sent with end-or-identify EOI condition, where the EOI control line on HP-IB is asserted to indicate the end of the transmission.	
delimiter	" \ @ = < > / ^ \$ % ' ' : " &	
	Matching characters that mark the beginning and end of a character string, or a list of user-defined functions or analyzer commands.	
	To avoid misinterpretation, choose delimiting characters that are not also within the string they delimit.	
digit	0 1 2 3 4 5 6 7 8 9	
lsb length	Represents the least significant byte of a two-byte word that describes the number of bytes returned or transmitted. See <i>msb length</i> .	
msb length	Represents the most significant byte of a two-byte word that describes the number of bytes returned or transmitted. See <i>lsb length</i> .	
number	Expressed as integer, decimal, or in exponential E form.	
	Real Number Range: \pm 1.797,693,134,862,315 $ imes$ 10 308 , including 0.	
	Up to 15 significant figures allowed. Numbers may be as small as \pm 2.225,073,858,507,202 $ imes$ 10 ⁻³⁰⁸	
	Integer Number Range: —32,768 through +32,767	
output termination	Line feed $ L_F $ with end-or-identify $ EOI $ condition. ASCII code 10 line feed is sent via HP-IB, with the end-or-identify control line on HP-IB set to indicate the end of the transmission.	

Syntax Diagram Elements (continued)

Syntax Component		Definition/Range
predefined function	AMPU, WLUNITS, MEASU, N STDEV, SUM, SUMSQR, VAR	IEM, MKBW, PEAKS, POSU, PWRBW, RMS, STB, IANCE.
	can be operated on by othe predefined function into a co	analyzer command that returns a number that r commands called compatible functions. Insert a promand statement where predefined function natax chart. See compatible function in this table.
predefined variable	The values of the following variables change depending on the current instrument settings. Each variable represents the value of the command function that has the same name as the variable.	
	MKN MKP MKPAUSE MKPX	/LOSS DL LG MKA MKACT MKAL MKAR MKWL MKT MKTV ML NSTATE RB RBR RL RLPOS STARTWL STOPWL TH VB VBR VTL WLOFFSET
traœ element	Value contained in one trace point. Notated as TRA[N] where N specifies the point position in the trace array. Values for N are 1 to 2048, or 1 to the length specified by TRDEF, whichever is less. Same for trace B TRB[N] , trace C TRC[N] , and user-defined traces LABEL[N] .	
trace range	Values contained in trace segment. Multi-point segments are notated as TRA[N,M], where N and M are end points of a segment and specify point positions in trace array. Values for N or M are 1 to 2048, or 1 to the length specified by TRDEF, whichever is less. Same for trace B TRB[N,M] , trace C TRC[N,M] , and user-defined traces LABEL[N,M] . Single-point segments are notated same as trace element above.	
units	Represent standard scientific	units.
	Amplitude Units:	DB, DBM, MW, NW, PW, UW, W
	Current Units:	A, MA, UA
	Frequency Units:	HZ, KHZ, MHZ, GHZ, KZ, MZ, GZ
	Time Units:	S, MS, US, SC
	Wavelength Units:	ANG, KM, NM, UM, PM

Syntax Diagram Elements (continued)

Syntax Component	Definition/Range
user-defined function	A label 1 to 12 characters long that is defined by the FUNCDEF or ACTDEF command. Choice of characters is A $-$ Z, O $-$ 9, and the underscore $ _ $. First character must be a letter. Numbers must be preceded by the underscore.
user-defined trace	A label 1 to 12 characters long that is defined by the TRDEF command. Choice of characters is A - Z, O - 9, and the underscore _ . First character must be a letter. Numbers must be preceded by the underscore.
user-defined variable	A label 1 to 12 characters long that is defined by the VARDEF or ACTDEF command. Choice of characters is A - Z, O - 9, and the underscore _ . First character must be a letter. Numbers must be preceded by the underscore.
value	See expanded diagram in syntax diagram.

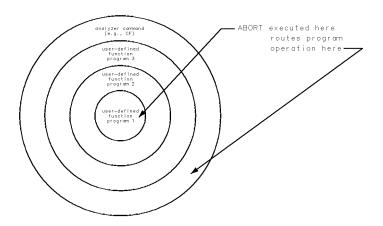

Language Reference

Terminators, Separators, and Commonly Used Arguments

ltem	Description
1	Comma. ASCII-decimal number 44.
	Semicolon. ASCII-decimal number 59.
\S_{P}	Space. ASCII-decimal number 32.
$\mathfrak{c}_{\mathrm{R}}$	Carriage return. ASCII-decimal number 13.
L_{F}	Line feed. ASCII-decimal number 10.
DN	Down. Change function value by step increment. Simulates press of 🔻 key.
UP	Up. Change function value by step increment. Simulates press of (A) key.
EP	Enter parameter. Suspend program operation until number is entered with front-panel controls (step keys, knob, or numeric keypad.) Pressing ACCEPT VALUE enters the number and resumes program operation.
?	Query. Returns current value of function to computer.
TRA	Select trace A for operation.
TRB	Select trace B for operation.
TRC	Select trace C for operation.

ABORT

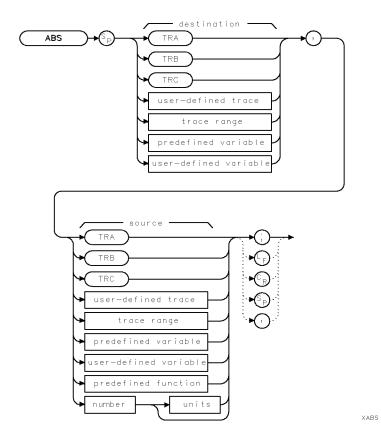
Stop the execution of a user-defined function.



XABORT

Example Use ABORT to interrupt operation of a repeat loop.

120	CLEAR 723	Initialize analyzer.
130	OUTPUT 723; "IP;"	
140	OUTPUT 723; "VARDEF KEY, 0;"	$Define\ a\ variable\ for\ storing\ the\ number\ of\ the$
		key that was last pressed.
145	OUTPUT 723; "FUNCDEF EXAMPLE, %";	Create user-defined function EXAMPLE.
150	OUTPUT 723; "REPEAT;";	$Begin\ repeat\ loop.$
160	OUTPUT 723; "READMENU KEY,";	Store the number of the pressed key in the user- defined variable, KEY. The keys are defined in the next program lines.
170	OUTPUT 723; "1, %SET SPAN %, ";	SET SPAN is key number 1.
180	OUTPUT 723; "2, %EXPAND RANGE%, ";	EXPAND RANGE is key number 2.
190	OUTPUT 723; "14, %EXIT %; ";	EXIT is key number 14.
200	OUTPUT 723;"IF KEY,EQ,1;";	If KEY equals 1, set measurement range to 1300 nm.
210	OUTPUT 723; "THEN; CENTERWL 1300NM; SP 10NM; ";	
220	OUTPUT 723; "ELSIF KEY, EQ, 2;";	If KEY equals 2, change the measurement range to 1550 nm.
230	OUTPUT 723; "THEN; CENTERWL 550NM; SP 10NM; ";	
240	OUTPUT 723; "ELSIF KEY, EQ, 14;";	If KEY equals 14, then stop repeating lines 150 – 280, and go to line 290 (ABORT).
250	OUTPUT 723; "THEN; ABORT; ";	
260	OUTPUT 723; "ENDIF; ";	
270	OUTPUT 723; "PA 500,500; ";	
280	OUTPUT 723; "UNTIL 1,EQ,0;";	$End\ repeat\mbox{-}loop\ definition.$
290	OUTPUT 723; "TRDSP TRA, OFF;"	$Turn\ off\ trace\ A.$
300	OUTPUT 723; "TEXT @EXIT KEY ENDS REPEAT LOOP.@; %; ";	


Description The ABORT command stops the execution of a user-defined function. If ABORT is encountered in a function that has been executed by pressing a key, the function is interrupted and front-panel control is returned. If the function is activated by a computer program, ABORT resumes program operation at the first analyzer command following the function. When, in addition, the function is nested within one or more user-defined functions, ABORT resumes program operation at the first analyzer command following all of the user-defined functions.

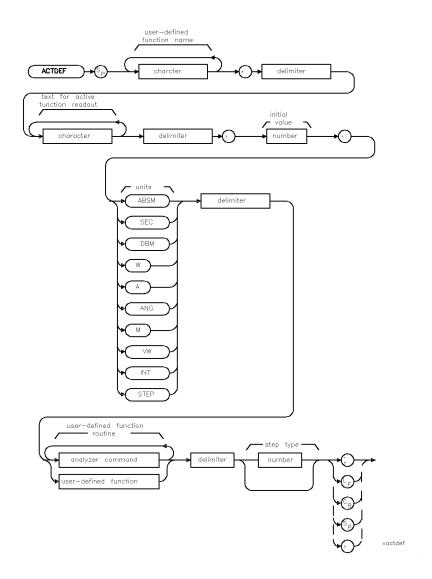
The RETURN command also interrupts operation of a user-defined function, but instead returns operation to the point where the user-defined function was called.

See Also ACTDEF, FUNCDEF, REPEAT/UNTIL, IF/THEN

ABS Store the absolute values of the source, point by point, in the destination.

ltem	Description
Source or Destination Amplitude Range	0 - 10,000 measurement units for linear trace data in <i>TRA, TRB, TRC, trace range</i> , or <i>user-defined trace</i> .
	—32,768 - +32,767 measurement units for logarithmic trace data in <i>TRA, TRB, TRC, trace range</i> , or <i>user-defined trace</i> .
	\pm 1.8 $ imes$ 10 308 when using <i>number, predefined variable</i> , or user-defined variable.
Source-Length Range	1 - 2048 position units. Default is 800 position units when using <i>TRA</i> , <i>TRB</i> , <i>TRC</i> . Truncated if longer than destination length. If shorter than destination length, last element is extended for operation.
Destination-Length Range	1 - 2048 position units.

Example


OUTPUT 723; "VARDEF NN,0;" 140 150 OUTPUT 723; "ABS NN, TRA[2];" Define variable NN equal to 0. Move absolute value of second element of trace A into NN.

Description The ABS command performs a point-by-point absolute value of the source variable or trace, the stores the results in the destination variable or trace. When the source length is longer than the destination length, excess data is ignored or truncated. When the source length is shorter than the destination length, the last point is duplicated to fill the destination.

> When using TRA, TRB, TRC, or trace range for source, use SNGLS and TS to be sure data reflects one complete sweep. TRDEF required when using user-defined trace. VARDEF required when using user-defined variable.

ACTDEF

Activate a user-defined active function.

Item	Description
Function-Name Range	1 - 12 characters: A - Z, O - 9, and underscore _ . First character must be a letter. Numbers must be preceded by underscore.
Readout Range	As allowed by selected units.
Initial-Value Range	As allowed by selected units.

Example Create a user-defined function whose value can be changed with front-panel controls or with math operations.

60	OUTPUT 723; "ACTDEF NEW_SPAN,500,NM,"	; Begin definition of active, user-defined function, called NEW_SPAN, that
		has an initial value of 500 nm.
70	OUTPUT 723; "@MPY SP,2, NEW_SPAN; @"	Multiply NEW_SPAN by 2, then set span equal to the product. End definition and store the function.
80	OUTPUT 723; "KEYDEF 3, NEW_SPAN;"	Assign function to a $\overline{\text{USER}}$ key.
90	OUTPUT 723;"VARDEF YY,0;"	Create a user-defined variable, YY.
100	OUTPUT 723; "MOV YY, NEW_SPAN;"	Set variable equal to NEW_SPAN.

Description The ACTDEF command stores in internal memory a user-defined function that operates like an active function. ACTDEF first consolidates a series of analyzer commands into one function, and then gives it a name. Executing the function name is the same as executing the series of commands contained in the function. (ACTDEF does *not* execute the function.)

> In addition to creating a user-defined function, the ACTDEF command creates a temporary variable that has the same name as the user-defined function. The variable can be used for operations as you would use any predefined variable. The variable exists as long as the user-defined function is stored in internal memory.

The ACTDEF command is unique in that it makes the user-defined function act like an active function. Active functions have the following characteristics:

- Their current value is displayed in the active-function readout.
- Their value can be changed with front-panel controls, provided the function is activated by a front-panel key.
- Their value is expressed as a variable for operations with other spectrum-analyzer functions.

For example, consider the active function for center wavelength. When the center-wavelength key is pressed, its value is displayed in the active-function readout. Turning the front-panel knob changes the active-function readout and the value of the predefined variable for center wavelength, CENTERWL. Changing the value of CENTERWL, in turn, changes the value of other active functions related to wavelength, such as start and stop wavelength:

```
STARTWL = CENTERWL — SPAN/2
STOPWL = CENTERWL + SPAN/2
```

The user-defined functions created by ACTDEF have the following characteristics:

- Text is displayed in the active-function readout, as indicated in the syntax diagram. If omitted, the *user-defined function name* is displayed in the active-function readout.
- A temporary variable is created and assigned the *initial value* indicated in the syntax diagram. The value is displayed in the active function readout.
- The value of the temporary variable can be changed. Each time the value is changed, the user-defined function (having the same name as the variable) is executed. If the user-defined function has been executed with a front-panel key, the value is changed with the front-panel step keys, knob, or numeric keypad. Remotely, the value is changed by math operations or by executing the user-defined function name followed by a number (see syntax diagram after description).
- The value of the temporary variable can be returned to the computer, or used for operations with any spectrum-analyzer commands that have *predefined variable* in their syntax diagrams.

```
10 OUTPUT 723; "ACTDEF COUNT, $Enter number.$,5,INT,$$;"

Create user-defined function.
20 OUTPUT 723; "COUNT;"

Execute user-defined function.
```

produces these results:

- The user-defined function called COUNT is stored in internal memory.
- "Enter number" is displayed in the active function readout.

ACT DEF

- A temporary variable called COUNT is created, and assigned the initial value. The variable is available for math operations.
- The current value of the function (and of the temporary variable) is displayed in the active function readout. Number 5 is displayed initially.
- The step keys, knob, and numeric keypad can change the function value.

In the preceding example, the user-defined function routine is a null function. (There are no commands between delimiters \$\$ in line 10.) In comparison, the following program characterizes the value of COUNT in line 70. In addition, COUNT is executed by front-panel key instead of a programming command.

The following example creates an active user-defined function.

```
60 OUTPUT 723; "ACTDEF COUNT,500,NM,";

Begin definition of active, user-defined function, called COUNT, that has an initial value of 500 nm.

70 OUTPUT 723; "$MPY SP,2,COUNT;$"

Multiply the current value of COUNT by 2, then set the span equal to the product. The "$" ends the definition.

80 OUTPUT 723; "KEYDEF 3,COUNT;"

Assign the function to a key.
```

To execute the COUNT function defined above, press LOCAL), (USER), COUNT.

Do not use existing user-defined function names or reserved words as names for user-defined functions. When using a string- or block-data field to transfer a command definition, be sure to use compatible terminators. Also, any block-field commands within the list must be the absolute type (A#-block).

Units argument

In the syntax diagram, the *units* arguments determine

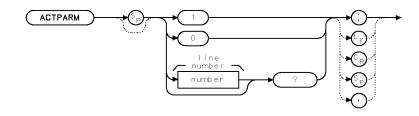
- what unit keys are activated during front-panel number entry.
- whether the temporary variable can be used in place of predefined variable during math operations.
- how the step functions, UP, (1), DN, and (7), change the value of the temporary variable.

Behavior of Unit Arguments

Argument	Step-Increment Value	Unit-Keys	Math Operation Compatibility
STEP	1	none	yes
INT integer	1	none	no
Н	Resolution bandwidth during zero-span mode; otherwise, 10% of span.	frequency	yes
ABSH absolute hertz	1, 3, 10 sequence	frequency	yes
M	Resolution bandwidth during zero-span mode; otherwise, 10% of span.	waveleng th	yes
ABSM absolute meters	1, 3, 10 sequence	wavelength	yes
SEC	1, 3, 10 sequence	time	yes
DBM	10 dB	absolute amplitude	yes
W	1, 3, 10 sequence	watts	yes
Α	1, 3, 10 sequence	amperes	yes

Step types argument

In the syntax diagram, the *step types* argument is an optional parameter that selects unit step progressions for the various supported ACTDEF unit types. A value of 0, as well as the omission of this argument, selects the default. The following tables lists the valid values for this argument.


Behavior of Step Types Arguments

Argument	Progression	Definition
0	linear	Default step.
1	linear	Step by 1.
2	linear	Step by the current vertical division size.
3	linear	Step by the current CF step size.
4	linear	Step using the same pattern as for wavelength LAMBDA stepping.
5	linear	Step using the same pattern as for responsivity stepping.
6	linear	Step by one wavelength division in non-zero span, otherwise by the resolution bandwidth.
7	linear	Step by the current horizontal division size.
8	linear	Step by the current vertical division size, but switch to a 1,2,5 log step if the current value is less than one vertical division.
9	linear	Step by the current span step size using the current source power step size.
10	linear	Step by 10.
11	log	Do a 1,2,5 log step progression.
12	log	Do a 1,3 log step progression.

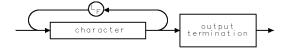
See Also DISPOSE, FORMAT, LOAD, PROTECT, RCLD, PURGE

ACTPARM

Turn the active parameter area on or off.

xactpa

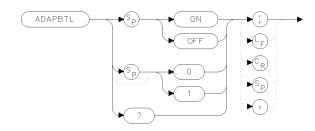
ltem	Description	
Preset State	OFF	
Number Range	0, 1, 2, 3, 4 \mid If the "number" is omitted, the command default is 0, the first line.	


Example

- 10 OUTPUT 723; "ACTPARM 1;"
- Turn on the active parameters.
- 20 OUTPUT 723; "ACTPARM?;"
- Query the top line value.
- 30 OUTPUT 723; "ACTPARM 0?;"
- Query the top line value.

Description The ACTPARM command turns the display of the active parameter area on or off. The active parameter area has the capability of containing four lines of data. Therefore, when querying the active parameter area, the following data lines are placed on the bus for the computer:

- 0 queries the first line.
- 1 queries the second line.
- 2 queries the third line.
- 3 queries the fourth line.
- 4 queries all four lines.


Query Response

qgenchar

ADAPBTL

Performs trace math A * DL / $(A + B) \triangleright A$ with each sweep.

xadatl

ltem	Description
Preset State	ADAPBTL OFF

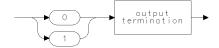
Example

120	OUTPUT	723;"SNGLS;"
130	חווקדוות	793. HT N. H

OUTPUT 723; "TS; VIEW TRA; "

OUTPUT 723; "ADAPBTL ON;"

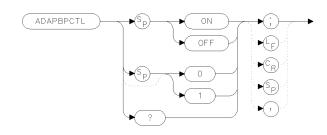
Activate single-sweep mode. Select linear amplitude scale. Sweep trace A and store it.


Description The ADAPBTL command requires a linear display mode. It multiplies trace A by the display line and then divides the result by the sum of traces A and B. The results are stored in trace A. If trace A is in clear-write mode, the function is continuous and occurs every sweep.

> This command allows ratio measurements to be made as a sweep is taken. If trace B has points near the bottom of screen, overflow or poor precision can occur. If a division by zero is attempted, a division by the smallest representable value will be performed instead.

To ensure that correct data is displayed, be sure that a sweep is taken before using this command. Only one trace math operation may be active at any given time.

ADAPBTL


Query Response

qgen0 .

ADAPBPCTL Performs trace math A * DL / (A + B + C) ▶ A with each sweep.

OUTPUT 723; "ADAPBPCTL ON;"

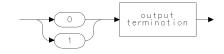
Item Description Preset State ADAPBPCTL OFF

xadapc

Example

150

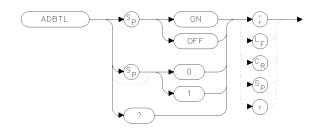
120	OUTPUT	723; "SNGLS; "	$Activate\ single ext{-sweep}\ mode.$
130	OUTPUT	723; "LN; "	$Select\ linear\ amplitude\ scale.$
140	OUTPUT	723; "TS; VIEW TRA; "	Sweep trace A and store it.


Description The ADAPBPCTL command requires a linear display mode. It multiplies trace A by the display line and divides the result by the sum of traces A, B, and C. The results are stored in trace A. If trace A is in clear-write mode, the function is continuous and occurs every sweep.

> This command allows ratio measurements to be made as a sweep is taken. If trace B has points near the bottom of screen, overflow or poor precision can occur. If a division by zero is attempted, a division by the smallest representable value will be performed instead.

To ensure that correct data is displayed, be sure that a sweep is taken before using this command. Only one trace math operation may be active at any given time.

qgen0 .


Query Response

See Also ADBTL

ADBTL

Performs trace math A * DL / B ▶ A with each sweep.

xadb t L

ltem	Description
Preset State	ADBTL OFF

Example

120	OUTPUT 723;"SN	GLS;"	$Activate\ single ext{-}sweep\ mode.$
130	OUTPUT 723;"LN	; ¹¹	Select linear amplitude scale.
140	OUTPUT 723;"TS	; VIEW TRA; "	Sweep trace A and store it.

150 OUTPUT 723; "ADBTL ON;"

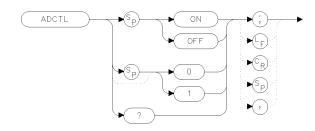
Description The ADBTL command requires a linear display mode. It multiplies trace A by the display line value then divides by trace B. The results are stored in trace

every sweep.

This command allows ratio measurements to be made as a sweep is taken. If trace B has points near the bottom of screen, overflow or poor precision can occur. If a division by zero is attempted, a division by the smallest representable value will be performed instead.

A. If trace A is in clear-write mode, the function is continuous and occurs

To ensure that correct data is displayed, be sure that a sweep is taken before using this command. Only one trace math operation may be active at any given time.


Query Response

qgen0 .

ADCTL

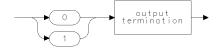
Performs trace math A * DL / C ▶ A with each sweep.

xadctl

ltem	Description
Preset State	ADCTL OFF

Example

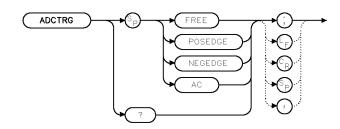
120	OUTPUT 723;"SN	GLS;"	$Activate\ single ext{-}sweep\ mode.$
130	OUTPUT 723;"LN	; ¹¹	Select linear amplitude scale.
140	OUTPUT 723;"TS	; VIEW TRA; "	Sweep trace A and store it.


150 OUTPUT 723; "ADCTL ON;"

Description The ADCTL command requires a linear display mode. It multiplies trace A by the display line value, then divides by trace C. The results are stored in trace A. If trace A is in clear-write mode, the function is continuous and occurs every sweep.

> This command allows ratio measurements to be made as a sweep is taken. If trace B has points near the bottom of screen, overflow or poor precision can occur. If a division by zero is attempted, a division by the smallest representable value will be performed instead.

To ensure that correct data is displayed, be sure that a sweep is taken before using this command. Only one trace math operation may be active at any given time.


Query Response

qgen0 .

ADCTRG

Selects the source of the ADC trigger.

xadct

ltem	Description
Preset State	ADCTRG FREE

Example

OUTPUT 723; "ADCTRG POSEDGE;"

Description The ADCTRG command selects the type of external triggering used by the optical spectrum analyzer's analog-to-digital converter. The TTL-compatible trigger signal from the light source is connected to the rear-panel EXT TRIG IN connector. The following types of triggering can be selected:

	5 71 55 5
Softkey	Type of Triggering
ADCTRIG FREE	External triggering is ignored. The ADC is triggered during sweeps by the optical spectrum analyzer's internal clock.
ADCTRIG POSEDGE	ADC is triggered by the rising edge of the external trigger signal.
ADCTRIG NEGEDGE	ADC is triggered by the falling edge of the external trigger signal.
ADCTRIG AC	ADC is alternately triggered by rising and filling edges of the external trigger signal. The amplitudes measured on opposite edges are subtracted and the absolute value of the result becomes the trace amplitude value.

For external ADC triggering, connect the signal to the rear-panel EXT TRIG IN connector. To delay external ADC triggering, refer to "ADCTRGDLY".

External trigger frequency can affect measurement accuracy

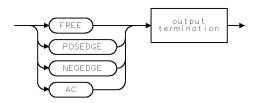
When using external ADC triggering in non-zero spans, the frequency of the external trigger signal can affect measurement accuracy. The trigger signal's frequency must be greater than

$$frequency > \frac{1.5(trace\ length)}{sweep\ time}.$$

In some cases, a factor as high as 2.0 may be required instead of 1.5. If the ADC trigger rate is too low for the current combination of trace length and sweep time, the warning message 16005 Sweep too fast is displayed. This warning is reported once for every sweep where the external trigger doesn't occur often enough.

Avoid oversweeping the video bandwidth

When using external ADC triggering, displayed video bandwidths are not accurate and care must be taken not to over sweep the actual video bandwidth. Use the following equation to estimate the actual video bandwidth:

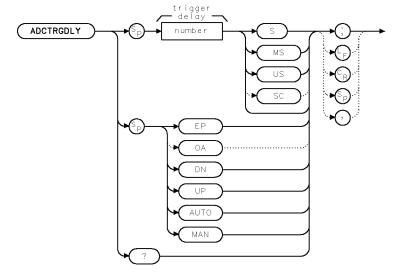

$$video\ bandwidth \approx \frac{(factor)(displayed\ bw)(external\ trigger\ frequency)}{27,000}$$

where:

factor is a function of the external trigger frequency. factor is always less than 1.0 and may be as low as 0.5.

To obtain the proper sweep time, estimate the actual video bandwidth (as described above), and then set the optical spectrum analyzer's bandwidth to that setting. Then, use a computer to query the coupled sweep time. Refer to the ST command in this manual. The value returned to the computer is the proper sweep time setting.

Query Response

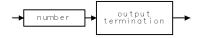


qadet

Language Reference **ADCTRG**

See Also ADCTRGDLY, ADCTRGSYN

ADCTRGDLY Delays ADC triggering.

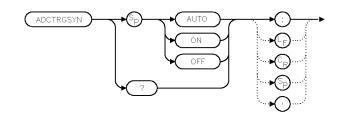

xadctd

ltem	Description
Preset State	Zero seconds of delay.

Example OUTPUT 723; "ADCTRGDLY;"

Description The ADCTRGDLY command delays external triggering of the analog-to-digital converter after the selected edge of the trigger signal.

Query Response

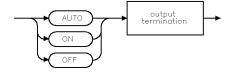


qadctd

See Also ADCTRG

XADCTRG

ADCTRGSYN Sets status of ADC SYNC OUT during active (non-free) ADC trigger modes.

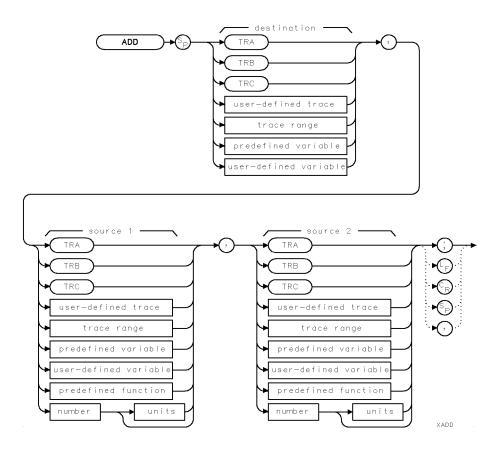

Item Description Preset State Auto.

Example

OUTPUT 723; "ADCTRGSYN ON;"

Description When AUTO is specified, the rear-panel ADC SYNC OUT signal is driven high when ADC trigger occurs and is driven low when the ADC trigger delay has expired. When ON is specified, the rear-panel ADC SYNC OUT signal is driven to a constant high state. When OFF is specified, the rear-panel ADC SYNC OUT signal is driven to a constant low state.

Query Response



QADCTRG

See Also ADCTRG

ADD

Add sources 1 and 2, point by point, then send their sum to the destination.

ltem	Description
Source or Destination Amplitude Range	0 – 10,000 measurement units for linear trace data in <i>TRA, TRB, TRC, trace range</i> , or <i>user-defined trace</i> .
	—32,768 - +32,767 measurement units for logarithmic trace data in <i>TRA, TRB, TRC, trace range</i> , or <i>user-defined trace</i> .
	\pm 1.8 $ imes$ 10 308 when using <i>number</i> , <i>predefined variable</i> , or user-defined variable.
Destination-Length Range	1 - 2048 position units.
Source-Length Range	1 – 2048 position units. Default is 800 position units when using <i>TRA</i> , <i>TRB</i> , <i>TRC</i> . Truncated if longer than destination length. If shorter than destination length, last element is extended for operation.

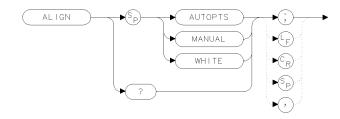
Example Add 25 nm to the center wavelength, then store their sum in a user-defined variable.

```
140 OUTPUT 723; "SP 200NM; CENTERWL 750NM; TS;"

Set measurement range and sweep it.

150 OUTPUT 723; "VARDEF I,0;"

Define user-defined variable I equal to 0.


Add 25 nm to the center wavelength, then place the sum in I.
```

Description The ADD command performs a point-by-point addition of the source variable or trace, then stores the results in the destination variable or trace. When the source length is longer than the destination length, excess data is ignored or truncated. When the source length is shorter than the destination length, the last point is duplicated to fill the destination.

When using TRA, TRB, TRC, or trace range for source, use SNGLS and TS to be sure data reflects one complete sweep. TRDEF required when using user-defined trace. VARDEF required when using user-defined variable.

ALIGN

Adjusts the fiber positioner's tracking table.

xalign

Example

OUTPUT 723; "ALIGN WHITE;"

Description The ALIGN command adjusts the fiber positioner's tracking table at multiple wavelengths. (The fiber positioner aligns the monochromator's output beam with an internal optical-fiber cable.) The alignment uses either the Option 002 built-in white light source or a user-supplied source.

> The command replaces pre-existing tracking data with new data and zeroes the (AUTO ALIGN) data. The resulting tracking data may be viewed via the extended state display: press State, MORE 1 of 3, MORE 2 of 3, show states, and then EXTEND STATE.

> If an AUTO ALIGN is executed after this alignment, all of the alignment tracking data will be shifted. In this sense, AUTO ALIGN is done on top of this alignment.

The following command arguments are available:

Argument	Definition

WHITE

Specifies the Option 002 built-in white light source. The alignment determines tracking corrections at 17 equally spaced wavelengths between 900 nm and 1700 nm. Current tracking data is replaced with new data, and the **AUTO ALIGN** data is zeroed. The alignment usually requires 2 to 3 minutes to execute. Be sure to connect the white light source output to the HP 71450A's OPTICAL INPUT (or HP

71451A's MONOCHROMATOR INPUT) before issuing the ALIGN command.

AUTOPT

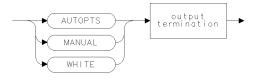
Specifies that an external broad-band light source is used. You must set the stop and start wavelengths prior to the alignment. These wavelengths are included in the alignment. The alignment takes about 2 or 3 minutes to complete. To run this alignment, you must observe the following points:

- Connect your own broadband light source to the front-panel input connector.
- Set the start and stop wavelengths within the input range of 600 nm to 1700 nm.
- Ensure that the span of the alignment is greater than 10 nm.
- The signal amplitude must be greater than -78 dBm in a 10 nm resolution bandwidth at all X's to be aligned.

If the above conditions are not met, a "Bad Wavelength Range" error message is displayed. The alignment occurs at equally spaced points between the start and stop wavelengths. No points are separated by more than 50 nm.

MANUAL

Runs an (AUTO ALIGN) at a wavelength apecified by the marker and transfers the results to the fiber positioner's tracking table. (A maximum of 32 alignments can be performed.) Before initiating the alignment, connect your own light source to the front-panel input connector. After the alignment, the AUTO ALIGN data is zeroed. The data being added to the tracking table is tested to see if it results in a tracking curve which is too steep. If the curve is too steep, an error is reported, and the data is not added to the table (neither is the AUTO ALIGN data zeroed). If

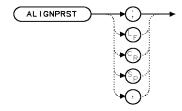

the current AUTO ALIGN motor position is close enough to a motor position already listed in the correction table, the AUTO ALIGN data will replace that entry instead of generating a new one. This "replacement" limit is wavelength and order dependent, but amounts to about 10 nm at 1300 nm in first order.

In the rare case where the AUTO ALIGN yields zero X and Y tracking corrections, the command will fail, indicating that no AUTO ALIGN data exists.

The following errors can be reported as a result of issuing the ALIGN command:

- 7055 Cal Failed (0B) Trajectory Table Overflow: This error indicates an attempt to add a point to an already-full trajectory tracking table. Neither the table or the current autoalign data are altered. Trajectory tracking table data may be viewed via the extended state display (EXTEND STATE softkey).
- 7055 Cal Failed (2B) Invalid Trajectory Corrections: The data being added to the correction table would cause the correction curve to become too steep. Neither the table or the current (AUTO ALIGN) data are altered. This can happen when executing the function after a long period of time has elapsed since the last ALIGN, of after the instrument has received a substantial mechanical shock. It can usually be remedied by executing the ALIGN AUTOPTS function.
- Bad xxx ROM: The data stored in one or both calibration ROMs is invalid. This situation must be remedied before ALIGN will function.

Query Response



qalign .

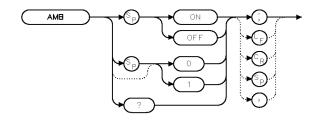
See Also ALIGNPRST

ALIGNPRST

Reset the output-fiber alignment of the monochromator.

XALIG

Example


10 OUTPUT 723; "ALIGNPRST;"

Description The ALIGNPRST command resets the optical spectrum analyzer monochromator output-fiber alignment. The monochromator's Trajectory tracking table is set to factory calibration values.

See Also AUTOALIGN

AMB

Performs trace math $A - B \triangleright A$ with each sweep.

XAMB

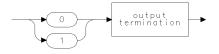
ltem	Description
Preset State	AMB OFF

Example

- OUTPUT 723; "SNGLS;"
- 40 OUTPUT 723; "LG 5DB;"
- OUTPUT 723; "TS; VIEW TRA;"
- 60 OUTPUT 723; "CLRW TRB; TS; "
- 70 OUTPUT 723; "AMB ON; "

Activate single-sweep mode.

 $Select\ logarithmic\ scale.$

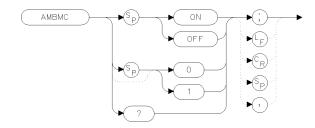

Measure with trace A and store results.

Measure with trace B

Subtract trace B from trace A.

Description The AMB command subtracts trace B from trace A, point by point, then places the results in trace A. If trace A is in clear-write mode and AMB ON is active, the AMB function is continuous and occurs every sweep. Executing AMB ON places trace B in view mode. The AMBPL command overrides AMB. Be sure each trace contains a complete sweep of measurement information.

Query Response



qgen0

See Also TS, TRPST, TRSTAT, VIEW, TM, VTL, VTH, CONTS, SNGLS, CLRW, STORREF

AMBMC

Performs trace math (A - B) - C ▶ A with each sweep.

x ambme

ltem	Description
Preset State	AMBMC OFF

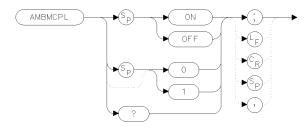
Example


130 OUTPUT 723; "LG 5DB;" OUTPUT 723; "TS; VIEW TRA;"

150 OUTPUT 723; "AMBMC ON;" Activate single-sweep mode. $Select\ logarithmic\ scale.$

Sweep trace A and store it.

Description The AMBMC command subtracts both trace B and trace C from trace A. The results are stored in trace A. If trace A is in clear-write mode, the function is continuous and occurs every sweep. Only one trace math operation may be active at any given time.


Query Response

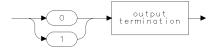
aaen0

AMBMCPL

Performs trace math (A - B) - C+DL ▶ A with each sweep.

x abmp I .

ltem	Description	
Preset State	AMBMCPL OFF	

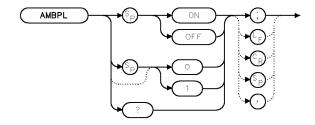

Example

120	OUTPUT	723; "SNGLS;"	$Activate\ single-sweep\ mode.$
130	OUTPUT	723;"LG 5DB;"	$Select\ logarithmic\ scale.$
140	OUTPUT	723; "TS; VIEW TRA; "	Sweep trace A and store it.

150 OUTPUT 723; "AMBMCPL ON;"

Description The AMBMCPL command subtracts both trace B and trace C from trace A, and then adds the display line. The results are stored in trace A. If trace A is in clear-write mode, the function is continuous and occurs every sweep. Only one trace math operation may be active at any given time.

Query Response



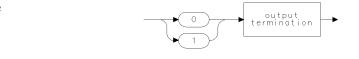
qgen0

x amb p 1

AMBPL

Performs trace math $A - B + DL \rightarrow A$ with each sweep.

ltem	Description
Preset State	AMBPL OFF

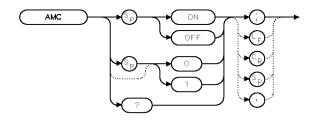

Е	xa	m	ρl	ϵ

40	OUTPUT	723; "SNGLS; "	$Activate\ single ext{-}sweep\ mode.$
50	OUTPUT	723;"LG 5DB;"	$Select\ logarithmic\ scale.$
60	OUTPUT	723;"TS; VIEW TRA;"	Measure with trace A and store results.
70	OUTPUT	723;"RL -10DBM;"	Change reference level to $10\ dBm$.
80	OUTPUT	723; "CLRW TRB; TS; "	Measure with trace B.
90	OUTPUT	723;"DL -10DBM;"	Set display line to -10 dBm.
100	OUTPUT	723; "AMBPL ON; "	Subtract trace B from trace A, then add
			$display\ line.$

Description The AMBPL command subtracts trace B from trace A, point by point, adds the display line to the difference, then stores the result in trace A. When AMBPL is executed, trace B is placed in view mode and cannot be swept. If trace A is in clear-write mode when AMBPL is executed, the AMBPL function is continuous and occurs every sweep. The AMBPL command overrides the AMB command. Be sure each trace contains a complete sweep of measurement information.

> This function is effective when wanting to place the results of trace subtraction at a specific location. Placing the optical spectrum analyzer in single sweep mode allows you to view the results of the trace math. Trace math is mainly used to normalize the display during stimulus-response measurements.

Query Response


See Also AMB, TS, TRPST, TRSTAT, VIEW, TM, VTL, VTH, CONTS, SNGLS, CLRW, STORREF

qgen0 .

XAMC

AMC

Performs trace math $A - C \triangleright A$ with each sweep.

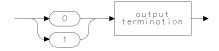
ltem Description Preset State AMC OFF

Example

- 30 OUTPUT 723; "SNGLS;"
- OUTPUT 723;"LG 5DB;"
- OUTPUT 723; "TS; VIEW TRA;"
- OUTPUT 723; "CLRW TRC; TS; "
- 70 OUTPUT 723; "AMC ON; "

Activate single-sweep mode.

 $Select\ logarithmic\ scale.$

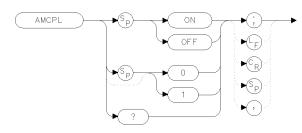

Measure with trace A and store results.

Measure with trace C.

Subtract trace C from trace A.

Description The AMC command subtracts trace C from trace A, point by point, then places the results in trace A. If trace A is in clear-write mode and AMC ON is active, the AMC function is continuous and occurs every sweep. Executing AMC ON places trace C in view mode. Be sure each trace contains a complete sweep of measurement information.

Query Response



qgen0

See Also TS, TRPST, TRSTAT, VIEW, TM, VTL, VTH, CONTS, SNGLS, CLRW, STORREF

AMCPL

Performs trace math (A - C)+DL ▶ A with each sweep.

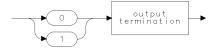
xamcpl.

ltem	Description
Preset State	AMCPL OFF

Example

120	OUTPUT	723; "SNGLS;"

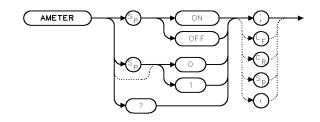
OUTPUT 723; "LG 5DB;" 130


OUTPUT 723; "TS; VIEW TRA;"

150 OUTPUT 723; "AMCPL ON;" $Activate\ single\textit{-sweep}\ mode.$ Select logarithmic scale.

Sweep trace A and store it.

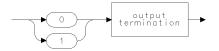
Description The AMCPL command subtracts trace C from trace A, and then adds the display line. The results are stored in trace A. If trace A is in clear-write mode, the function is continuous and occurs every sweep. Only one trace math operation may be active at any given time.


Query Response

qgen0

AMETER

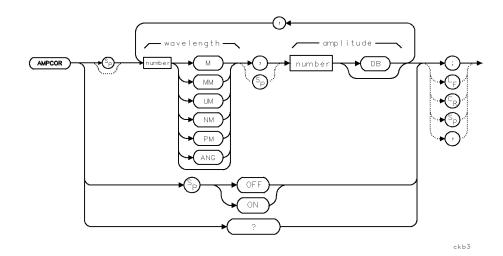
Enable readout of currently updated trace point.


ltem **Description** Preset State AMETER OFF

Example

OUTPUT 723; "AMETER ON;"

Description The AMETER command enables a readout of the amplitude of the blank-ahead marker in the display's message area. The blank-ahead marker is the point on the trace which is currently being updated by new measurement data.


Query Response

qgen0

AMPCOR

Apply amplitude corrections at specified wavelengths.

ltem	Description
Wavelength Range	600 - 1700 nm
Amplitude Range	full measurement range
Number of wavelength/amplitude pairs	Depends on available internal memory.
Preset State	AMPCOR OFF

Example Compensate for wavelength-dependent amplitude inaccuracies at the input.

```
150 OUTPUT 723; "CENTERWL 950NM; SP 200NM;" Set center wavelength and span.

160 OUTPUT 723; "AMPCOR 750NM, -5DB, 950NM, -10DB, 1150NM, -15DB;"

Store wavelength-amplitude pairs in analyzer. Notice that wavelengths are in ascending order.

170 !

180 OUTPUT 723; "AMPCOR?;" Query correction values to computer.
```

200 ENTER 723; A\$[I] 210 PRINT A\$[I] 220 NEXT I

190 FOR I=1 TO 3

Query correction values to computer.

Store first three pairs in computer array A\$[I].

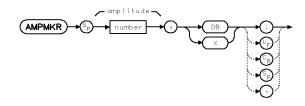
```
230 DISP "PRESS CONTINUE"
240 PAUSE
                                         Press CONTINUE on computer keyboard to
                                         continue program.
250 DISP ""
260
     OUTPUT 723; "AMPCOR OFF;"
                                         Turn off AMPCOR function.
     OUTPUT 723; "AMPCOR?;"
                                         Query correction values to computer. Val-
                                         ues are zeros, because AMPCOR is turned
                                         off.
280 ENTER 723; A$[1]
```

Description Use AMPCOR to compensate for wavelength-dependent amplitude variations at the input port. Pairs of wavelength-amplitude correction points can be entered, depending on the availability of adequate internal memory. The wavelength values entered must be equal or be in increasing order, or an error condition results. Whenever AMPCOR is on, the correction values are added to all measurement results.

> The values of the correction points are applied across the active measurement range. Between points, the correction values are interpolated. When measuring at wavelengths outside the first and last correction points, the first or last value (as appropriate) is used as the correction value.

When AMPCOR is executed, the wavelength-amplitude pairs are stored in internal memory. DISPOSE ALL, FORMAT, and PERASE erase the amplitude-correction pairs from memory.

Query Response Queried values are 0, 0 when AMPCOR is set to OFF.


290 PRINT A\$[1]

See Also PERASE, ERASE, DISPOSE, PROTECT, LIMTOCOR

AMPMKR

Position the left and right power integration points to the value specified on either side of the peak.

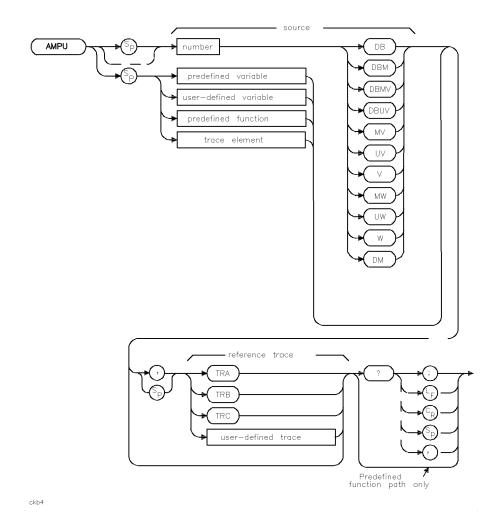
ckb15

Example

OUTPUT 723; "AMPMKR -10, DB;" 110

OUTPUT 723; "AMPMKR .1,X;"

Set the left and right integration points $down\ 10\ dB\ from\ the\ peak.$


Set the left and right integration points down 10% (or -10 dB) from the peak.

Description The AMPKMKR command positions the power integration points down from the peak according to the entered amplitude. The left point is specified as marker number 4 and the right point is specified as marker number 5.

See Also WLMKRR, WLMKRL

AMPU

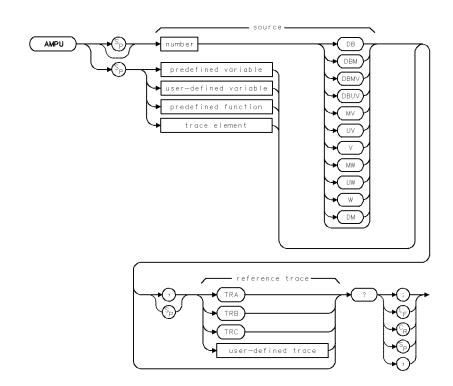
Convert measurement-unit values to amplitude-unit values.

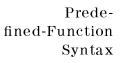
ltem	Description
Source Amplitude Range	For $trace\ element$, 0 - 10,000 measurement units for linear trace data, and $-32,768$ - $+32,767$ measurement units for logarithmic trace data.
	\pm 1.8 $ imes$ 10 308 when using <i>number, predefined variable,</i> or <i>user-defined variable.</i>
Source-Length Range	1 - 2048
Reference-Trace Amplitude Range	0 - 10,000 measurement units for linear trace data.
	—32,768 - +32,767 measurement units for logarithmic trace data.
Reference-Trace Length Range	3 - 2048 position units. Default is 800 position units when using <i>TRA, TRB, TRC</i> .

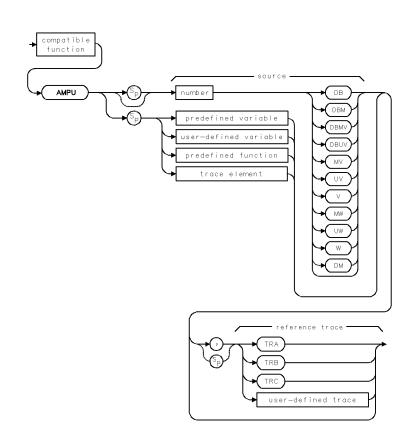
Example Display trace-amplitude information in both measurement and amplitude units on the computer display.

160	OUTPUT 723; "VARDEF NN,0;"	Define user-defined variable, NN equal to 0.
170	OUTPUT 723; "MOV NN, TRA[15];"	Place the value of the fifteenth element of
		trace A in NN.
180	OUTPUT 723;"NN?;"	Query value of NN in measurement units.
190	ENTER 723; N	Store value in computer variable, N.
200	OUTPUT 723; "AMPU NN, TRA?;"	Query value of NN in amplitude units.
210	ENTER 723; M	Store value in computer variable, M.
220	OUTPUT 723; "AUNITS?;"	Query description of active units.
230	ENTER 723;Units\$	Store response in computer variable, Units
		\$.
240	PRINT N;"MEASUREMENT UNITS"	Print value in measurement units.
250	PRINT M;Units\$	Print value in amplitude units.

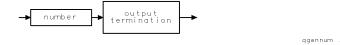
Description Measurement units describe trace-amplitude information as follows. For logarithmic trace information, a measurement unit is one hundredth of a dBm.

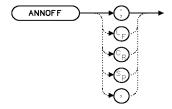

value in measurement units = 100 (value in dBm)


For linear trace information, a measurement unit is defined as 0 (zero) for the bottom of the graticule, and as 10,000 for the top (reference level). Amplitude units describe trace-amplitude information in Decibels (dBm) or Watts (W, mW, μ W). If the reference trace is specified, AMPU converts to the amplitude values according to the amplitude scale of the reference trace. Otherwise, AMPU converts to units determined by the reference level, AUNITS command, or MEASURE command.


AMPU must be used as either a query or as a source in another analyzer command. Form a query by ending the AMPU statement with a question mark (?). When used as a query, AMPU sends the amplitude-unit value of the source on the bus to the computer.

Use AMPU as a source by incorporating the AMPU statement into the source of any spectrum-analyzer command having *predefined function* in its syntax diagram. When AMPU is used as a source, the amplitude-unit value of the source is used for operation by the command containing AMPU.

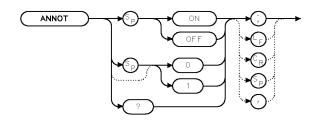

Query Syntax


Query Response

See Also AUNITS, RL, MEASURE, ROFFSET, INZ, LN, LG

ANNOFF

Turn off all display annotation.

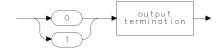

x anno f

Description The ANNOFF command turns off all annotation on the display screen similar to the ANNOT OFF command. The difference is that, in order to reenable the display annotation, either execute the IP command or press the INSTRUMENT PRESET key on the front panel. This command provides measurement security by blanking all display annotation for the current instrument setup and then requiring an instrument preset to turn the annotation back on.

See Also ANNOT OFF, IP

ANNOT

Turn annotation on or off.

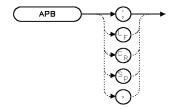

ltem	Description
Preset State	ANNOT ON

Example

110 OUTPUT 723; "ANNOT OFF;" Turn off the annotation.

Description The ANNOT command turns off the annotation on the analyzer display. When the annotation is turned off, the time between sweeps decreases. The annotation command also blanks text displayed with the TITLE command.

Query Response


qgen0 .

XANNOT

See Also TITLE

APB

Add trace B and trace A, then enter sum in trace A. $(A + B \triangleright A)$

XAPB

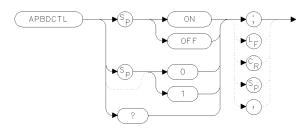
Example

- 30 OUTPUT 723; "SNGLS; "
- 40 OUTPUT 723; "RL 10DBM; SP 200NM; CENTERWL 950NM;"
- 50 OUTPUT 723; "TS; VIEW TRA;"
- 60 OUTPUT 723; "CLRW TRB; TS;"
- 70 OUTPUT 723; "AMB ON; "

Activate single-sweep mode.

Set measurement range.

Sweep trace A and view results.


Clear write trace B. Sweep trace B.

 $Subtract\ trace\ B\ from\ trace\ A.$

Description The APB command adds traces A and B, point by point, then sends the result to trace A. Thus, APB can restore the original trace after A-minus-B function (AMB) is executed. However, unlike AMB, the math operation is done only once, making APB equivalent to executing ADD TRA,TRB. Be sure data reflects one complete sweep for trace A and trace B by using SNGLS and TS.

APBDCTL

Performs trace math DL * $(A+B) / C \rightarrow A$ with each sweep.

ltem	Description
Preset State	APBDCTL OFF

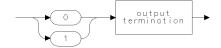
Example

120	OUTPUT	723; "SNGLS; "
130	OUTPUT	723; "LN; "

OUTPUT 723; "TS; VIEW TRA;" OUTPUT 723; "APBDCTL;"

Activate single-sweep mode. Select linear amplitude scale. Sweep trace A and store it.

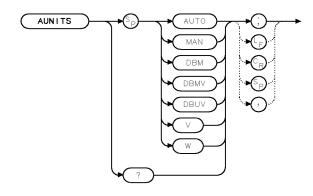
xapbdc


Description The APBDCTL command requires a linear display mode. It multiplies the sum of traces A and B by the display line. Then, this result is divided by trace C. The final results are stored in trace A. If trace A is in clear-write mode, the function is continuous and occurs every sweep.

> This command allows ratio measurements to be made as a sweep is taken. If trace B has points near the bottom of screen, overflow or poor precision can occur. If a division by zero is attempted, a division by the smallest representable value will be performed instead.

To ensure that correct data is displayed, be sure that a sweep is taken before using this command. Only one trace math operation may be active at any given time.

APBDCTL

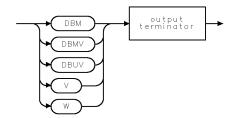

Query Response

qgen0 .

AUNITS

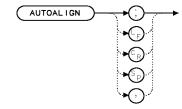
Select amplitude units or annotation and query data.

ltem	Description
Preset State	AUNITS DBM


xaunit .

Example Change the units of the amplitude readouts.

OUTPUT 723; "AUNITS AUTO;" Indicate amplitude units in dBm.


Description The AUNITS command changes the units of the amplitude readouts displayed on the analyzer display or queried to the computer. The AUNITS command also determines the amplitude units for analyzer commands where the default-units path is specified. AUNITS does not affect trace amplitude information queried to the computer with the TRA, TRB, or TRC commands.

Query Response

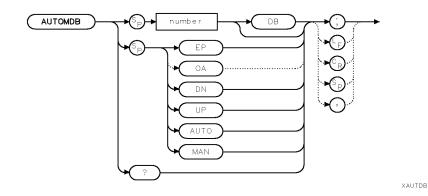
qaunit

AUTOALIGN Automatically realign the monochromator output fiber.

XAUTOA

Example

10 OUTPUT 723; "AUTOALIGN;"

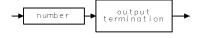

Description The AUTOALIGN command realigns the optical spectrum analyzer monochromator output fiber with the output beam. If there is a marker on screen, the alignment is done at the marker's wavelength. If there is no marker, the alignment is done at the wavelength of the largest signal detected in full span.

> The auto-alignment routine is performed in a 10 nm resolution bandwidth setting. At the end of the auto-alignment routine, the instrument returns to its previous state.

See Also ALIGN, ALIGNPRST

AUTOMDB

Set vertical scale after the automatic measurement procedure.

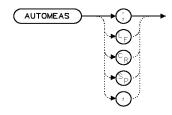

ltem	Description	
Vertical Scale Limits	0.01 dB to 20 dB	

Example

10 OUTPUT 723; "AUTOMDB 10DB;"

Description The AUTOMDB command sets the vertical scale (decibels-per-division) after performing the auto-measurement procedure. If AUTO is specified, the measurement procedure uses the vertical scale prior to initiating the measurement procedure. Specifying MAN causes the measurement procedure to use the vertical scale set by the AUTOMDB MAN command.

Query Response



qgennum

See Also AUTOMEAS

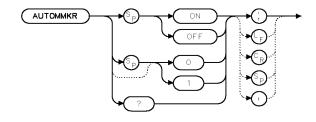
AUTOMEAS

Automatically zoom in on largest signal at input.

XAUTOM

Example

10 OUTPUT 723; "AUTOMEAS;"

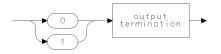

Description The AUTOMEAS command causes the optical spectrum analyzer to automatically locate the largest input signal. When the command is executed, the optical spectrum analyzer resets to the full wavelength span. Then, the largest signal is located, and the span is reduced to observe this signal. If the AUTOMMKR command is set to ON, the automatic measurement routine finds the signal that is closest to the current marker.

> Use the AUTOMSP command to set the final reduced span used by the automatic measurement routine. Use the AUTOMDB command to set the final vertical scale set by the automatic measurement routine. Use the AUTOMOPT command to cause the AUTOMEAS function to optimize the sensitivity.

An error is generated if a signal is not detected, and the instrument returns to its previous state.

See Also AUTOMDB, AUTOMMKR, AUTOMSP, AUTOMOPT

AUTOMMKR Locate the closest signal to the current marker.

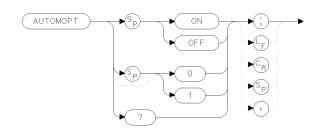

XAUTMK

Example

OUTPUT 723; "AUTOMMKR ON;"

Description The AUTOMMKR command causes the automatic measurement routine to locate the signal that is closest to the current marker. This alters the routine's normal function of locating the largest input signal across the optical spectrum analyzer's full wavelength range. When AUTOMMKR in ON, the routine starts from the current wavelength span rather than the full span.

Query Response



qgen0

See Also AUTOMDB, AUTOMEAS, AUTOMSP

AUTOMOPT

Control sensitivity optimization during the automeasure routine.

Item Description Preset State AUTOMOPT OFF

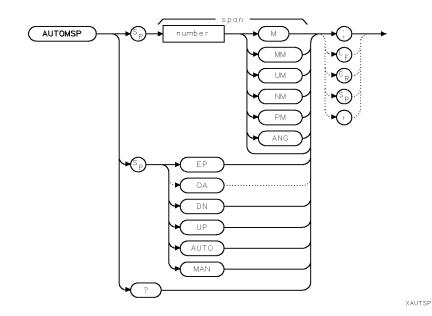
xamopt

qgen0

Example

OUTPUT 723; "AUTOMOPT ON;"

Description The AUTOMOPT command controls sensitivity optimization during the automatic measurement routine. When AUTOMOPT is on, the AUTOMEAS routine optimizes the sensitivity after locating the signal. This feature is useful for signals that have a large dynamic range such as DFB lasers. With AUTOMOPT off, the DFB laser's side modes would be hidden in the displayed noise.

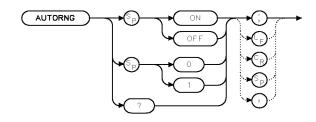

Query Response

See Also AUTOMEAS

AUTOMSP

Determine the final wavelength span set by the automatic measurement routine.

Example 10 OUTPUT 723; "AUTOMSP 100NM;"


Description The AUTOMSP command sets the wavelength span for viewing the signal located by the AUTOMEAS function.

See Also AUTOMDB, AUTOMEAS, AUTOMMKR

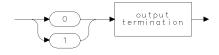
AUTORNG

Determine whether automatic ranging is enabled or disabled.

XAUTOR

Example

OUTPUT 723; "AUTORNG ON;"

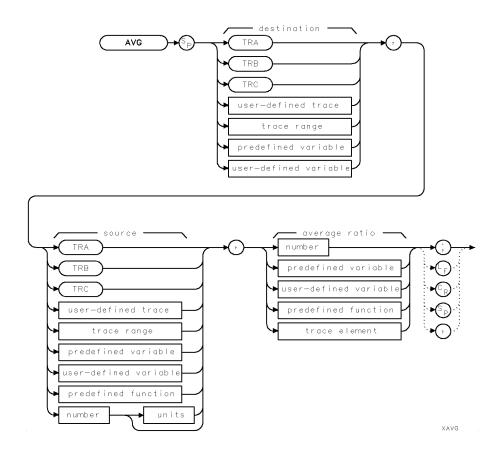

Enable the automatic-ranging feature. When the signal is less powerful, select the most sensitive measuring range. When the signal is more powerful, select the less sensitive measuring range.

Description The AUTORNG command is used to turn on or off the automatic ranging feature. When the incoming signal strength is sufficient, a less sensitive measurement mode is needed. When the incoming signal strength is weak, a more sensitive measurement mode is needed.

> AUTORNG ON (1) allows the analyzer to select the appropriate measurement sensitivity.

AUTORNG OFF (0) selects the least sensitive measurement mode as determined by the reference level and turns off the automatic ranging feature.

Query Response



qgen0 .

See Also AUTOMDB, AUTOMEAS, AUTOMMKR, SENS, VB

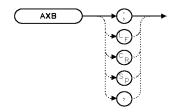
AVG

Average the source and the destination, then store the result in the destination.

ltem	Description	
Average-Ratio Range	_32,768 - +32,767, except 0	
Source or Destination Amplitude Range	0 – 10,000 measurement units for linear trace data in <i>TRA, TRB, TRC, trace range</i> , or <i>user-defined trace</i> .	
	—32,768 - +32,767 measurement units for logarithmic trace data in <i>TRA, TRB, TRC, trace range</i> , or <i>user-defined trace</i> .	
	\pm 1.8 $ imes$ 10 308 when using <i>number, predefined variable</i> , or user-defined variable.	
Destination-Length Range	1 - 2048 position units.	
Source-Length Range	1 - 2048 position units. Default is 800 position units when using TRA , TRB , TRC . Truncated if longer than destination length. If shorter than destination length, last element is extended for operation.	

Example Measure with traces A and B. Average the measurement results in the traces, then view the averaged results in trace A.

130	OUTPUT	723; "IP; "	Instrument preset.
140	OUTPUT	723; "SNGLS;"	$Activate\ single\ -sweep\ mode.$
150	OUTPUT	723; "TS; "	Take a sweep. Measure with trace A.
160	OUTPUT	723; "VIEW TRA;"	Store measurement results and view trace A.
170	OUTPUT	723; "VB 100HZ;"	$Activate\ the\ video\ bandwidth\ filter.$
180	OUTPUT	723; "CLRW TRB; TS; "	Measure with trace B.
190	OUTPUT	723; "VIEW TRB;"	Store measurement results and view trace B
200	OUTPUT	723; "AVG TRA, TRB, 2;"	Average trace B with 2 and store results in
			$trace\ A.$
210	OUTPUT	723; "BLANK TRB; "	Blank trace B leaving only averaged results.


Description The AVG command averages the source and the destination, then stores the result in the destination according to the following algorithm:

$$destination_{new} \, = \, \frac{ \left((average \ ratio - 1)(destination_{old}) + source \right) }{average_{ratio}}$$

When the source is a trace, be sure it contains a complete sweep of measurement information by using SNGLS and TS commands.

AXB

Exchange contents of trace A and trace B.

XAXB

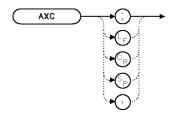
Example

- 120 OUTPUT 723; "SNGLS;" OUTPUT 723; "CENTERWL 950NM; SP 500NM;" 130
- 140 OUTPUT 723; "TS; VIEW TRA;"
- OUTPUT 723; "FS; " 150
- 160 OUTPUT 723; "CLRW TRB; TS;"
- 170 OUTPUT 723; "AXB; "

Activate single-sweep mode.

Set measurement range. Sweep trace A and store it. Measure with full span.

Clear-write $trace\ B$


Exchange traces A and B.

Description The AXB command exchanges the contents of traces A and B. If trace A and trace B are in clear-write mode, AXB puts them in view mode. If the traces are of different lengths, data is lost. Use TRDEF or TRPST to set the lengths equal. Be sure the traces contain a complete sweep of measurement information by using SNGLS and TS commands.

See Also TS, VIEW, CLRW, SNGLS

AXC

Exchange contents of trace A and trace C.

Example

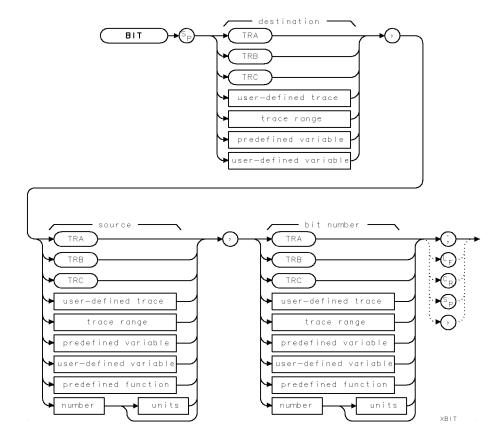
120 OUTPUT 723;	"SNGLS:"
-----------------	----------

OUTPUT 723; "CENTERWL 950NM; SP 500NM; " 130

140 OUTPUT 723; "TS; VIEW TRA;"

150 OUTPUT 723; "AXC;" Activate single-sweep mode.

xaxc

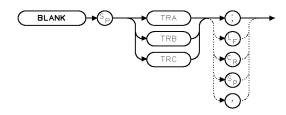

Set measurement range. Sweep trace A and store it.

Exchange traces A and C.

Description The AXC command exchanges the contents of traces A and C. If trace A and trace C are in clear-write mode, AXC puts them in view mode. If the traces are of different lengths, data is lost. Use TRDEF or TRPST to set the lengths equal. Be sure the traces contain a complete sweep of measurement information by using SNGLS and TS commands.

See Also TS, VIEW, CLRW, SNGLS

BIT Store the state of a specified bit in the destination.


ltem	Description	
Source or Destination Amplitude Range	0 – 10,000 measurement units for linear trace data in <i>TRA, TRB, TRC, trace range</i> , or <i>user-defined trace</i> .	
	—32,768 - +32,767 measurement units for logarithmic trace data in <i>TRA, TRB, TRC, trace range</i> , or <i>user-defined trace</i> .	
	\pm 1.8 $ imes$ 10 308 when using <i>number</i> , <i>predefined variable</i> , or user-defined variable.	
Destination-Length Range	1 - 2048 position units.	
Source-Length Range	1 - 2048 position units. Default is 800 position units when using TRA, TRB, TRC. Truncated if longer than destination length. If shorter than destination length, last element is extended for operation.	

Example	160	OUTPUT 723; "VARDEF ERROR, 0;"	$ \begin{array}{l} \textit{Define user-defined variable ERROR equal to} \\ \textit{0}. \end{array} $
	170	OUTPUT 723; "BIT ERROR, STB, 5;"	Store value of bit 5 in ERROR.
	180	OUTPUT 723; "ERROR?;"	Query value of ERROR.
	190	ENTER 723; Error	Assign value to computer variable, Error.
	200	IF NOT Error THEN DISP NO	If Error equals zero, display "NO" on com-
			$puter\ display.$
	210	DISP "ERROR PRESENT"	Display "ERROR PRESENT" on computer
			display.

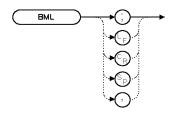
Description The BIT command stores the state (0 or 1) of a specified bit in the destination. When using TRA, TRB, TRC, or trace range for source, use SNGLS and TS to be sure data reflects one complete sweep. TRDEF required when using user-defined trace. VARDEF required when using user-defined variable.

BLANK

Blank and store display of trace.

XBLANK

Example


110 OUTPUT 723; "BLANK TRA;" $Blank\ trace\ A.$

Description The BLANK command stops sweeping (updating) the specified trace and deletes it from the display. Any data contained in the trace is stored in reserved memory.

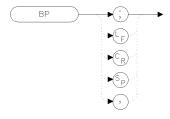
See Also TRPST, TRSTAT

BML

Subtract display line value from trace B. $(B - DL \triangleright B)$

XBML

Example	110	OUTPUT	723; "BLANK TRA;"	$Blank\ trace\ A.$
p	120	OUTPUT	723; "SNGLS; "	$Activate\ single ext{-sweep}\ mode.$
	130	OUTPUT	723; "CENTERWL 750NM; SP 100NM; "	Set measurement range.
	140	OUTPUT	723; "DL -10DBM; RL ODBM;"	Set display line and reference
				level.
	150	OUTPUT	723; "CLRW TRB; TS; "	Sweep trace B.
	160	PAUSE		Press CONTINUE on computer
				key board.
	170	OUTPUT	723; "BML;"	Subtract display line from trace
				B.

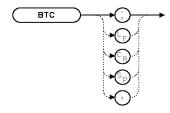

Description The BML command subtracts the display line from trace B, then stores the difference in trace B and places trace B in view mode. Use SNGLS and TS to be sure trace B contains a complete sweep of measurement information.

See Also TRSTAT, TRPST, VIEW TRDSP, CLRW

xbp

BP

Send the "beep" command to the display.


Example

100 OUTPUT 723; "BP;"

Description The BP command sends the BP; command to the display causing a single audible beep. The length and pitch of the tone can not be controlled. If there is no display link, neither a beep or error message occurs.

BTC

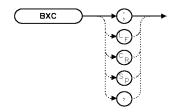
Store a copy of trace B in trace C, then store and display trace C contents.

XBTC

Example

OUTPUT 723; "SNGLS; CLRW TRB; TS;" 120

Sweep trace BTransfer trace B to trace C.


OUTPUT 723; "BTC;" 130

Description The BTC command transfers the contents of trace B to trace C, then stops updating trace C by placing it in the view mode. Be sure trace B contains a complete sweep of measurement information. To retain all data, the length of traces A and B must be equal. Use TRDEF to change trace length, if necessary.

See Also TRSTAT, TRPST, VIEW, TRDSP, CLRW

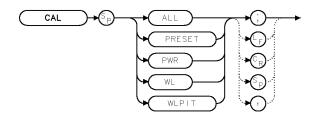
BXC

Exchange contents of trace B and trace C.

XBXC

Example

190 OUTPUT 723; "BXC;"


Exchange traces B and C.

Description The BXC command exchanges the contents of traces B and C, then stops updating them by placing them in the view mode. Be sure each trace contains a complete sweep of measurement information before executing BXC. To retain all data, the size of the traces must be equal. Use TRDEF to change trace length if necessary.

See Also VIEW, TRSTAT, TRPST, CLRW, TRDSP

CAL

Execute a calibration routine.

xcal

ltem	Description	
Preset State	CAL ALL	

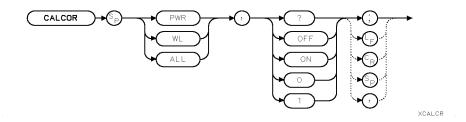
Example

OUTPUT 723; "CAL WL;"

Description The CAL command performs error-correction routines which calculate and apply correction factors for wavelength or power. An external calibration signal must be connected to the optical spectrum analyzer before executing CAL. If a signal is not connected, an error condition results. Use the CALCOR command to deactivate the correction factors.

The command arguments have the following definitions:

Argument	Definition
CAL ALL	Calibrates for both wavelength and power.
CAL PRESET	Erases all user calibration data.
CAL PWR	Calibrates at the power level specified by the CALPWR command at the entered calibration wavelength. The maximum adjustment range is limited to ± 5 dB. The CAL PWR command also verifies that the calibration signal is within ± 1 to 2 nm of the entered calibration wavelength.
CAL WL	Calibrates at the wavelength specified by the CALWL command. The maximum adjustment range is limited to about 1 to 2 nm. The CAL WL command also verifies


that the calibration signal is within $\pm 5~\text{dB}$ of the entered calibration power.

CAL WLPIT Calibrates at the wavelength of the designated signal pit.

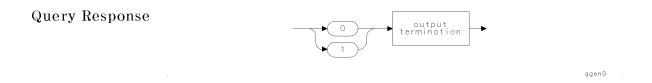
See Also CALCOR, CALPWR, CALWL

CALCOR

Individually remove applied calibration correction factors.

ltem	Description
Preset State	CALCOR ALL, ON

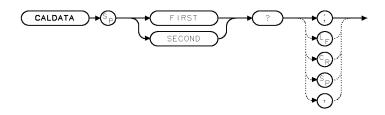
Example


OUTPUT 723; "CALCOR PWR,?;"

180 ENTER 723; A Query status of power correction factor. Assign response (1 or 0) to computer variable.

Description The CALCOR command disables the correction factors computed by the CAL command. The factors can be disabled or re-enabled individually or all at once. During normal operation, all correction factors are on. Disable the factors during special applications, or when you wish to supply your own calibration procedure.

> CALCOR PWR, OFF disables power correction factors. These factors improve the power accuracy of displayed measurement results by compensating for irregularities in the system.

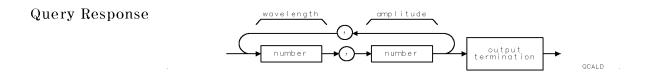

CALCOR WL, OFF disables wavelength correction factors. These factors improve the wavelength accuracy of displayed measurement results by compensating for irregularities in the monochromator.

See Also CAL, CALWL, CALPWR

CALDATA

Return factory-supplied calibration data.

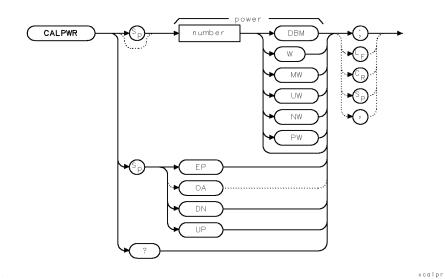
XCALD


Example

- 10 INTEGER NUM_PTS
- 20 REAL CAL(1:300,1:2)
- 30 MAT CAL=(-2E9)
- 40 OUTPUT 723; "CALDATA FIRST?;"
- 50 ENTER 723 USING "%, K"; CAL(*)
- 60 NUM_PTS=1
- 70 WHILE CAL(NUM_PTS,1)>-1E9
- 80 NUM PTS=NUM PTS+1
- 90 END_WHILE

Description The CALDATA command queries the optical spectrum analyzer for factory supplied calibration data. The calibration data returned is determined by the INSTMODE setting. The data may be DIODE only correction data or normal correction data for both the diode and the monochromator.

> When INSTMODE is set to PWRMTR, the data returned is only the diode correction data. When INSTMODE is set to OSA or SR, the data returned is the combination of the grating order and diode correction data. Grating-only data is returned when INSTMODE is set to PRESEL or PD.


The CALDATA command queries factory supplied calibration data for the first or second grating order. The optical spectrum analyzer's internal monochromator uses a diffraction grating operating at either the first or second order modes. Second order correction data is used when the stop wavelength is less than 900 nm and the default setting, GRATORDER AUTO, is selected.

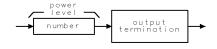
See Also INSTMODE, GRATORDER

CALPWR

Specify power level of reference signal used by calibration routine.

Description ltem Minimum level is -300 dBm. Power Range Step Increment 1 major vertical-scale division

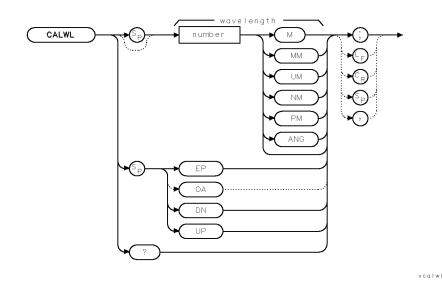
Example	140	OUTPUT 723; "CALPWR -15DBM;"	Specify -15 dBm as the power level of the calibrator reference.
	150	OUTPUT 723; "CALPWR?;"	Query value to computer.
	160	ENTER 723; N	$Assign\ value\ to\ computer\ variable.$


170 PRINT "Calibrate to ";N;"dBm"

Description The CALPWR command specifies the power of the calibration reference used by the CAL command. Use CALPWR to specify a different calibration power. To prevent the generation of an error, the power value entered must be within ± 5 dB of the calibration signal.

Print value on computer display.

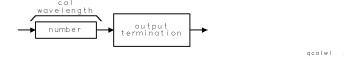
qcalpr


Query Response

See Also CAL, CALCOR, CALWL

CALWL

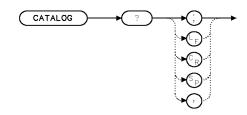
Specify wavelength used by calibration routine.


ltem	Description	
Wavelength Range	600nm - 1700nm	
Step Increment	10% of span	
Preset State	1300 nm	

Example

150 OUTPUT 723; "CALWL 600NM;" Calibrate to 600 nm.

Description The CALWL command specifies the wavelength of the calibration reference used with the CAL command. (The CAL command performs a calibration at the wavelength specified by CALWL.) Use CALWL to specify a different calibration wavelength. To prevent the generation of an error, the wavelength value entered must be within 1 to 2 nm of the calibration signal.


Query Response

See Also CAL, CALCOR, CALPWR

CATALOG

Query the catalog of internal memory in a condensed format.

xcatal

Example

150 OUTPUT 723; "CATALOG?;"

Description The CATALOG command queries the catalog of internal memory in a condensed format as follows:

> 0917504,0914480 total mem, avail mem CONFIG, CONFIG, 0005992 filename, filetype, filesize LARGEST, LARGEST, 0911438 FOO, FUNC 00011 FRED, VAR 80000

Name and filetype are restricted to a maximum number of 15 characters; otherwise, both fields are truncated. If the file size exceeds 99,999 bytes, the size is returned in kilobytes, indicated with a "K" suffix. Filetypes are categorized as listed below:

internal configuration data space LARGEST largest contiguous data space available FUNC FUNCDEF storage area VAR VARDEF storage area TRACE user-defined trace storage area ASCII data storage area for instrument states, stored traces A, B, or C, stored user keys, and data stored to a memory card. AFUNC user-defined active function (see the ACTDEF command) **PROG**

HP generated personality or program APROG HP generated active function

CONFIG

Cataloging MSI

To catalog the contents of the memory selected by the MSI command, refer to the DSPTEXT CAT? command.

When system DEBUG ON is active, the format is modified to give more information on actual file status. With DEBUG ON the output is as follows:

```
0917504,0914480

CONFIG, CONFIG, 0005992

LARGEST,LARGEST,0911438

,AG 00042

FOO,G 000040

FRED.G 000056
```

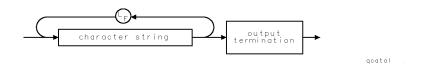
The output format of all non-system files is as follows:

```
<filename>,<file status> <total memory used>
```

Where:

The <filename> is the name of one of the files listed above. The <file status> is one or more of the letters listed in the List of <file status> Letter Descriptions.

List of <file status> Letter Descriptions


- A indicates the memory block that is available.
- D indicates the memory block that is disposed. If the block is in use, it is marked and disposed of as soon as it is no longer in use.
- G indicates a valid memory block (one that is a real block with valid data).
- P indicates the memory block is protected. The user has protected the block to prevent its being disposed. If memory is formatted or erased, these blocks are removed.
- * indicates the memory block is in use. Either an HP generated function is using the block, or a downloadable program (DLP) is currently being executed.

CATALOG

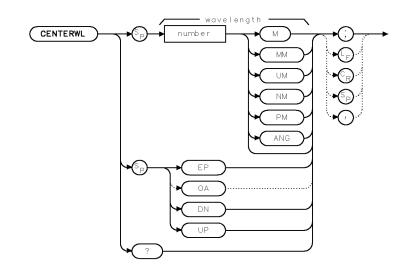
Note the following items when using the CATALOG command with DEBUG ON.

- The listing reflects the ordering and structure of what is physically in memory as opposed to what is indicated in the sorted table. Therefore, some understanding of how the memory manager manipulates, resizes, and moves around these memory blocks is sometimes needed to understand what is shown.
- Rather than stepping down through the table, the listing uses pointers stored within each block to locate the next block. A successful catalog listing verifies that the pointers are all correct.
- The size represents the entire size of the block (as calculated from the internal pointers), not just the user data area. A block includes the above-mentioned pointers, the name, the data type, and so on.
- Instead of showing the data type, the block's status as used by the memory manager is displayed. Refer to the List of <file status> Letter Descriptions above.
- Normally the garbage collection routine is run before a catalog listing is displayed. This is not done when DEBUG is turned ON.

Query Response

With DEBUG OFF, the output is as follows:

 $\begin{array}{lll} \texttt{0917504,0914480} & & \textit{total mem, avail mem} \\ \texttt{CONFIG,CONFIG,0005992} & & \textit{filename,filetype,filesize} \\ \texttt{LARGEST,LARGEST,0911438} \\ \texttt{F00,FUNC} & \texttt{00011} \end{array}$


80000

With DEBUG ON, the output is as follows:

FRED, VAR

0917504,0914480 CONFIG,CONFIG, 0005992 LARGEST,LARGEST,0911438 ,AG 00042 FOO,G 000040 FRED,G 000056 See Also DSPTEXT

CENTERWL Set the center wavelength of measurement range.

Х	¢	е	w	L	

ltem	Description	
Wavelength Range	Actual range is hardware dependent. Firmware range is 600 nm to 1700 nm. With wavelength limit OFF, the range is 350 nm to 2000 nm.	
Step Increment	Determined by SS command.	
Preset State	highest possible stop wavelength $-$ lowest possible start wavelength $\div 2$	

Example

- 100 OUTPUT 723; "SNGLS;"
- 110 OUTPUT 723; "CENTERWL 1200NM;"
- OUTPUT 723;"TS;" 120

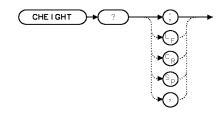

- Set center wavelength to 1200 nanometers.
- Update displayed trace.

Description The CENTERWL command sets the center wavelength. The span remains constant. The center-wavelength and the start- and stop-wavelength settings are related as follows:

$$center\ wavelength = \frac{stop\ wavelength + start\ wavelength}{2}$$

CENTERWL UP and CENTERWL DN increase or decrease the center wavelength by increments determined by the step function, SS.

Query Response



ggennum

See Also SS, STARTWL, STOPWL, MKSS, FS, SP, WLOFFSET, WLLIMIT ON, WLLINIT OFF

CHEIGHT

Query the character height.

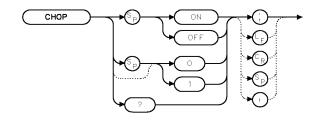


XCH

ltem	Description	
Preset State	full window, 4.34	

The CHEIGHT? query computes the character height as a percentage of the window height. This command is necessary for programs that want to adjust their graphics and TEXT displays depending on the window size. The characters remain the same size regardless of what size the window is. The units of the number returned is percent. For Example, executing the CHEIGHT? query on a full-screen window display returns 4.34. That is, the character height is 4.34% of the window height where the window is 23 ($100 \div 4.34$) characters high.

Query Response


qgennum

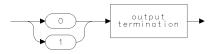
See Also TEXT, CWIDTH, PA, PR

хснор

CHOP

Turn on or off the input and light for chop mode.

ltem	Description	
Preset State	ON	

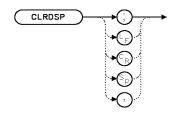

Example

150 OUTPUT 723; "CHOP ON;"

Description The CHOP command turns the input and light for chop mode on or off.

Provided the sweep times are long, the CHOP command increases dynamic range. CHOP mode subtracts the ambient light from the signal. With CHOP mode ON, the instrument automatically enables chop mode for sweep times 40s, or longer. CHOP mode is disabled when it is set to OFF.

Query Response



qgen0

See Also ST

CLRDSP

Clear the display.

XCL RDS

Example Clear the analyzer of user-created graphics.

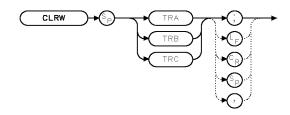
```
      110
      OUTPUT 723; "PU; PA 300, 900;"
      Place pen at (300,900).

      120
      OUTPUT 723; "TEXT$WARNING$;"
      Write text.

      130
      OUTPUT 723; "WAIT 4S;"
      Wait four seconds.

      140
      OUTPUT 723; "CLRDSP;"
      Clear graphics.
```

Description The CLRDSP command removes all spectrum-analyzer graphics from the display and its memory. CLRDSP executes the following:


- Deletes all items from memory (IT).
- Turns off the reference-graphics mode (IT 0).
- Removes all graphic offsets (OR).
- Sets the scale of the X-Y coordinates to 0 to 1000 for both X and Y (SCALE).
- Sets the origin to 0,0 (OR).
- Deletes all graphics windows (DWINDOW).
- Deletes text displayed by the TEXT command (*not* by the TITLE command).
- Deletes numbers displayed with the DSPLY command.

See Also IT, OR, SCALE, DWINDOW, TEXT, DSPLY, PA, PR, PD, LINET, PU

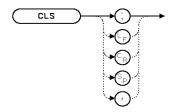
XCL RW

CLRW

Continuously measure and store detected signals.

ltem	Description
Preset State	CLRW TRA

Example


120 OUTPUT 723; "CLRW TRA;" Clear-write trace A.

Description The CLRW command enables the clear-write mode, which continuously measures and stores any signals present at the spectrum-analyzer input port when the trigger conditions for the sweep are met. If the spectrum analyzer has a display, measurement results are continuously displayed during the clear-write mode. CLRW operates on trace A, B, or C. CLRW initially clears the selected trace, setting the amplitude of all trace elements equal to the bottom graticule-line value. The trigger then signals the start of the sweep and the trace is updated continuously as the sweep progresses.

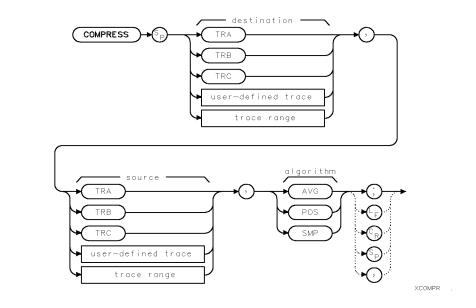
See Also TRPST, BML, BTC, BXC, TRSTAT, AMB, AMBPL, AMC, AXB, TRDSP

CLS

Set all bits in the status-byte register to 0.

XCLS

Example


10 OUTPUT 723; "CLS;"

Description The CLS (clear status) command clears all the bits in the status register. Upon completion of this command, the Command Complete bit of the status register is set. Refer to Chapter 4, "Monitoring System Operation" for additional information about status byte use.

See Also RQS, SRQ, STB

COMPRESS

Reduce trace length while retaining relative wavelength and amplitude characteristics of trace data.

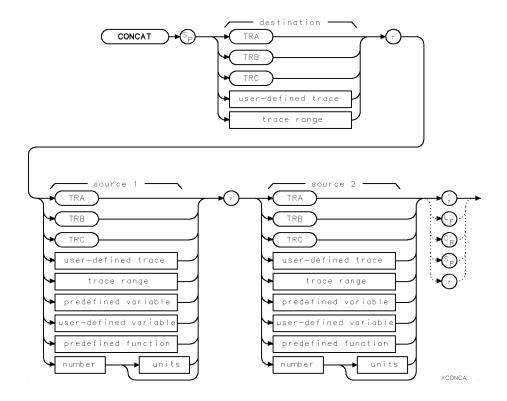
ltem	Description	
Source or Destination Length Range	3 - 2048 position units.	
Source or Destination Amplitude Range	0 - 10,000 measurement units for linear trace data. —32,768 - +32,767 measurement units for logarithmic trace data.	

COMPRESS

Example	110	OUTPUT 723; "CENTERWL 1000NM; SP 300NM;"	Set measurement range.
Zadirpre	120	OUTPUT 723;"TRDEF TRC,100;"	Change length of trace C to 100 elements.
	130	OUTPUT 723; "BLANK TRA; SNGLS;"	Blank trace A. Activate single- sweep mode.
	140	OUTPUT 723; "CLRW TRB; TS; "	Measure with trace B. Sweep measurement range.
	150	OUTPUT 723; "COMPRESS TRC, TRB, POS;"	$Compress\ trace\ C\ to\ fit\ trace\ B$
	160	OUTPUT 723; "BLANK TRB;"	$Blank\ trace\ B$
	170	OUTPUT 723:"VIEW TRC:"	$View\ trace\ C.$

Description The COMPRESS command stores a compressed copy of the source trace in a smaller destination trace. The source trace is divided into the same number of intervals as points in the destination trace. The data within each source interval is compressed into a single value for the corresponding destination trace point. For example, if the source trace is 1000 points long, and the destination trace is 100 points long, COMPRESS divides the source trace into 100 ten-point intervals and computes a compressed value for each interval according to the compression algorithm selected. The compressed value for the first interval becomes the amplitude of the first point in the destination trace. The 99 remaining compressed values determine the amplitude of the last 99 points of the destination trace.

The compression algorithms are as follows:


COMPRESS AVG selects the average value of the points in each interval.

COMPRESS POS selects the highest value in each interval.

COMPRESS SMP (sample) selects the last point in the interval.

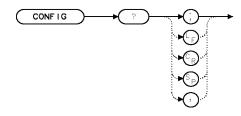
CONCAT

Concatenate two traces to make one trace.

ltem	Description
Source or Destination Amplitude Range	0 - 10,000 measurement units for linear trace data in <i>TRA, TRB, TRC, trace range</i> , or <i>user-defined trace</i> . —32,768 - +32,767 measurement units for logarithmic trace data in <i>TRA, TRB, TRC, trace range</i> , or <i>user-defined trace</i> .
	\pm 1.8 $ imes$ 10 308 when using <i>number</i> , <i>predefined variable</i> , or user-defined variable.
Source-Length Range	1 – 2048 position units. Default is 800 position units when using <i>TRA</i> , <i>TRB</i> , <i>TRC</i> . Truncated if sum of sources is longer than destination length. If shorter than destination length, last element is extended for operation.
Destination-Length Range	1 - 2048 position units.

Example

200 OUTPUT 723; "CONCAT TRC, TRA[1,400], TRB[401,800];"


Concatenate last half of trace B to end of first half of trace A. Store new array in trace C.

Description The CONCAT command concatenates source 2 to the end of source 1, then stores the new array in the destination. The size of the destination and sources can vary from 3 to 2048 points. If necessary, reduce trace lengths with COMPRESS, TRA, TRB, TRC, or TRDEF. Otherwise, the concatenated array may not fit in the destination and trace information is lost. When using TRA, TRB, TRC, or trace range for source, use SNGLS and TS to be sure data reflects one complete sweep. TRDEF required when using user-defined trace. VARDEF required when using user-defined variable.

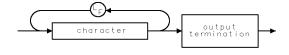
See Also TS, COMPRESS, TRDEF, TRA, TRB, TRC

CONFIG

Query the instrument configuration for model numbers and MSIB addresses of all slaves.

xconfi

100 OUTPUT 723; "CONFIG;"

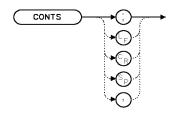

Description The CONFIG command queries a series of ASCII strings, separated by carriage returns, indicating the model number and MSIB address of this module and any slave instruments. The format is as follows:

<model number>,<MSIB row number>,<MSIB column number>

An example of the CONFIG query response is:

70950A,0,23

Query Response



qgenchar

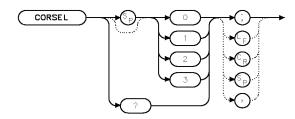
See Also DSPTEXT CONFIG

CONTS

Sweep continuously each time trigger conditions are met.

XCONTS

Example


170 OUTPUT 723; "CONTS;"

Description The CONTS command activates the continuous-sweep mode where the analyzer sweeps continuously as long as the trigger and data-entry conditions are met. Executing CONTS aborts the current sweep to start a new one.

See Also TM, VTL, VTH, SNGLS, TRPST

CORSEL

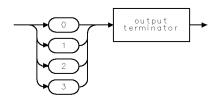
Select the flatness correction table.

XCORS

Example

10 OUTPUT 723; "CORSEL 0;"

Description The CORSEL command selects which flatness correction table will be applied to the measurement data.

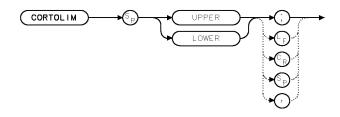

NORMAL: Applies both diode and grating flatness correction tables. Returned as 0 by the query.

DIODE : Applies only the diode flatness correction table. Returned as 1 by the query.

GRATING: Applies only the grating flatness correction table. Returned as 2 by the query.

NONE: Turns off diode and grating flatness correction tables. Returned as 3 by the query.

Query Response



QCORS

See Also OPTSW, INSTMODE, CALDATA

CORTOLIM

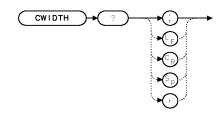
Transfer AMPCOR data to a limit line.

Example

10 OUTPUT 723; "CORTOLIM UPPER;"

Transfer amplitude-correction data into the upper limit line.

xcorto


Description The CORTOLIM command transfers data to the specified limit line. This allows the AMPCOR data to be viewed or edited. Use LIMTOCOR to bring the edited data back to the amplitude-correction storage.

See Also AMPCOR, LIMTOCOR

XCWID

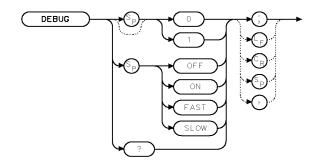
CWIDTH

Query the character width as a percentage of the window width.

Description Item Preset State full window, 1.87

Description The CWIDTH query computes the character width as a percentage of the window width. This command is necessary for programs that want to adjust their graphics and TEXT displays depending on the window size. The characters remain the same size regardless of what size the window is. The units of the number returned is percent. For Example, executing the CWIDTH query on a full-screen window display returns 1.87. That is, the character width is 1.87% of the window width where the window is 53 $(100 \div 1.87)$ characters wide.

Query Response



qgennum

See Also CHEIGHT, TEXT, PA, PR

DEBUG

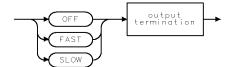
Start the program debugging mode.

ltem	Description
Preset State	DEBUG OFF

Example

210 OUTPUT 723; "DEBUG SLOW;" Activate the slow debug mode.

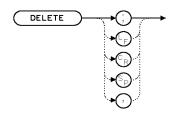
XDEBUG


220 OUTPUT 723; "DEBUG OFF; " Turn off debug mode.

Description The DEBUG command is a troubleshooting aid for locating faulty syntax in spectrum-analyzer programs. DEBUG ON, DEBUG SLOW, and DEBUG FAST activate the debug mode, where spectrum analyzer commands are displayed on the data line below the graticule as the commands are executed. When a faulty spectrum-analyzer command is encountered, subsequent analyzer commands are not executed. The faulty command is the last command shown at the right end of the data line. DEBUG also activates keys that step, pause, or continue program operation.

DEBUG FAST processes commands quickly.

DEBUG SLOW processes command slowly.


Query Response

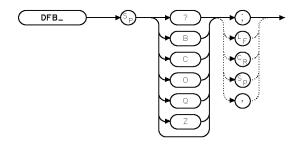
QDEBUG .

DELETE

Delete graphics item from memory.

XDELET

Е	xa	m	p	le
---	----	---	---	----

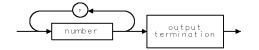

120	CLEAR 723	Initialize analyzer.
130	OUTPUT 723; "IP; "	
140	OUTPUT 723; "CLRDSP;"	Clear graphics.
150	OUTPUT 723; "TRDSP TRA, OFF;"	$Turn\ off\ trace\ A.$
160	OUTPUT 723;"IT 1;VW OFF;"	
170	OUTPUT 723; "TEXT\$An Item\$;"	Define item 1 as text located at (150,600).
180	OUTPUT 723; "OR 150,600;"	
190	OUTPUT 723; "VW ON;"	Display item 1.
200	OUTPUT 723;"IT 2;VW OFF;"	Define item 2 as a triangle at (500,500).
210	OUTPUT 723; "PA 0,0,50,50,";	
220	OUTPUT 723; "50,0,0,0;"	
230	OUTPUT 723; "OR 500,500;"	
240	OUTPUT 723; "VW ON;"	Display item 2.
250	OUTPUT 723; "WAIT 2;"	$Wait\ two\ seconds.$
260	OUTPUT 723;"IT 1;DELETE;"	Delete item 1 from display and memory.

Description The DELETE command blanks the active graphics item from the display and from its memory. This command does not apply to item 0 (zero). Items are stored in memory located in the display (such as HP 70004, HP 70205, or HP 70206) with the IT command.

See Also IT

xdfb

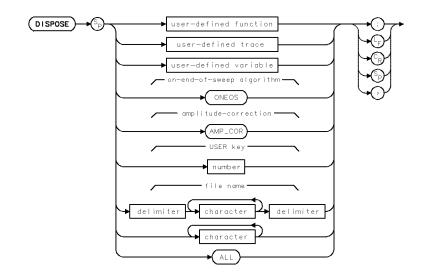
DFB_ Start the DFB laser characterization measurement DLP.


Parameters require one underscore and one space.

ltem	Description	
DFB_ ?	Queries the DLP and returns:	
	peak wavelength wavelength offset stop band center offset SMSR side mode suppression ratio peak amplitude bandwidth bandwidth amplitude	
DFB_ B	Turns on or off the view of the stop-band peaks.	
DFB_ C	Turn on or off the view of the SMSR peaks.	
DFB_ 0	B_ O Turn on or off the calculations.	
DFB_ Q	_ Q Exit the measurement DLP.	
DFB_ Z	Performs the measurement system optimization function, increasing instrument sensitivity to ensure the side-modes are properly located and displayed.	

Example	10	OUTPUT 723;"IP;";	Preset the instrument.
2 mampro	20	OUTPUT 723;"DFB_;";	$Start\ the\ DFB\ characterization\ measurement.$
	30	OUTPUT 723;"DFB_ C;";	Turn on or off, the view of SMSR peaks.
	40	OUTPUT 723:"DFB Q:":	Exit the DFB characterization measurement DLP.

Description The DFB_ command automatically measures the characteristics of a distributed-feedback laser source. Refer to the *HP 71450B/1B/2B User's Guide* for additional information.


Query Response

qgnumr

DISPOSE

Erase all or part of internal memory.

Example

```
120
     CLEAR 723
                                                           Initialize analyzer.
130
     OUTPUT 723; "IP;"
     OUTPUT 723; "VARDEF VA, 0;"
                                                           Define user-defined variable, VA, equal to 0.
140
     OUTPUT 723; "FUNCDEF NNN,@ @;"
                                                           Define null, user-defined function, called NNN. (There
                                                           are no commands between delimiters @ and @.)
160
     OUTPUT 723; "KEYDEF, 7, NNN, $C$;"
                                                           Define key 7, called C, which has the null function.
     OUTPUT 723; "PROTECT VA, OFF; PROTECT NNN, OFF; "
170
                                                           Turn off internal-memory protection.
180
    OUTPUT 723; "DISPOSE 7;"
                                                           Erase key from internal memory.
     OUTPUT 723; "DISPOSE VA;"
190
                                                           Erase user-defined variable from internal memory.
     OUTPUT 723; "DISPOSE NNN;"
200
                                                           Erase user-defined function from internal memory.
```

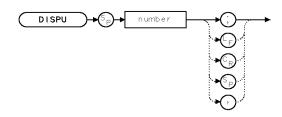
Description The DISPOSE command clears internal memory, which is reserved for operator use. Delimiters required before and after file name when it contains a number or lower-case letters. When file name is upper-case alpha characters only, delimiters are optional.

Executing DISPOSE ALL clears the following from internal memory.

Internal Memory Contents

Article	Storing Command
User-defined functions	ACTDEF, FUNCDEF, RCLD, LOAD
User-defined variables	VARDEF, RCLD, LOAD
On-end-of-sweep algorithm	ONEOS, RCLD, LOAD
User-defined key	KEYDEF
User-defined trace arrays	TRDEF, RCLD, LOAD
Amplitude correction factors	AMPCOR
Limit-line trace arrays	LIMILINE, FUNCDEF, RCLD, LOAD
$(\overline{\text{USER}})$ keys files	STOR, SAVEU
Limit line files	STOR, LIMISAV
Trace files	STOR, SAVET
State register files	STOR, SAVES
Program Files	SAVED

An article can be cleared from internal memory individually by specifying its name, except for user-defined keys which are specified by number. DISPOSE ALL does not clear any articles from reserved memory, such as the predefined traces A, B, and C. DISPOSE ALL does not clear items (IT) or graphics windows (DWINDOW). The PROTECT command protects articles in internal memory against erasure with the DISPOSE command. If any articles are protected, DISPOSE ALL erases only unprotected articles. When DISPOSE attempts to erase a single protected article, an error message is generated. The following table summarizes commands that protect, erase, or allocate the contents of internal memory. For more information, see Chapter 3, "Controlling Memory."


Commands that Erase or Protect Internal Memory

Memory Components	Commands that Erase or Re	set Memory	Comman Protect	
	PURGE/DISPOSE/PERASE/ERASE	NSTATE	PROTECT	PSTATE
user-defined variable	χ		Х	
user-defined trace	Х		Х	
user-defined function	Х		Χ	
active user-defined function	Х		Χ	
on-end-of-sweep-algorithm	χ		Х	
trace-amplitude correction factors	χ		Χ	
limit-line trace arrays	χ		Χ	
trace-amplitude correction factors	χ		Χ	
state register file settings and title line,	χ	Χ	Χ	Х
trace file	χ		Х	
(USER) keys file	χ		χ	
Limit line file	χ		Х	

See Also PROTECT. Any command that stores or loads articles into internal memory: ACTDEF, AMPCOR, FUNCDEF, KEYDEF, LIMILINE, LIMISAV, LOAD, NSTATE, ONEOS, SAVES, SAVET, SAVEU, STOR, USERERR, USERKEY, USERMSG, VARDEF

DISPU

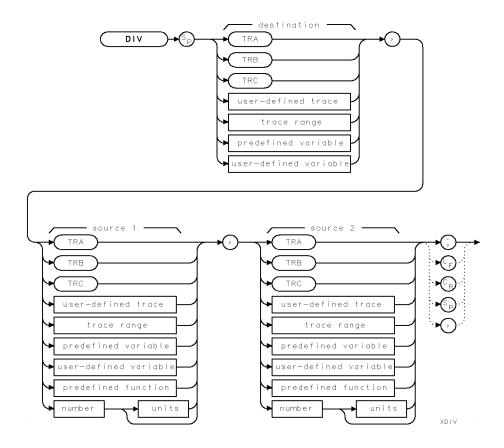
Dispose of a user menu.

XDISPU

ltem	Description
Range	integer, O - 9999, depending on memory

Example

10 OUTPUT 723; "DISPU 10;"

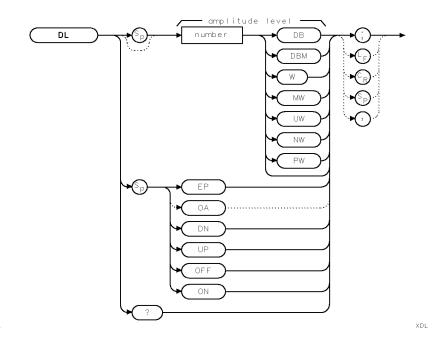

Dispose the specified user menu.

Description The DISPU command is used to dispose USER menus that have been saved with the SAVE USERKEY softkey or the equivalent SAVEU command. The current PREFX is used.

See Also SAVEU, PREFX

DIV

Divide source 1 by source 2, then send the result to the destination:


ltem	Description
Source or Destination Amplitude Range	0 - 10,000 measurement units for linear trace data in <i>TRA, TRB, TRC, trace range</i> , or <i>user-defined trace</i> .
	—32,768 - +32,767 measurement units for logarithmic trace data in <i>TRA, TRB, TRC, trace range</i> , or <i>user-defined trace</i> .
	\pm 1.8 $ imes$ 10 308 when using <i>number</i> , <i>predefined variable</i> , or user-defined variable.
Source-Length Range	3 – 2048. Default is 800 when using <i>TRA, TRB, TRC</i> . When source lengths differ, the last element of the shorter source is repeated for the division process. When the sources are longer than the destination trace, they are truncated to fit.
Destination-Length Range	3 - 2048 position units.

Example

140	OUTPUT 723; "SNGLS;"	$Activate\ single ext{-}sweep\ mode.$
150	OUTPUT 723;"TS;"	Sweep trace A .
160	OUTPUT 723; "DIV TRB, TRA, 2;"	Divide trace A by 2. Store results in trace B
170	OUTPUT 723;"VIEW TRB;"	$View\ trace\ B$

Description The DIV command divides source 1 by source 2, then sends the result to the destination. If traces are used, be sure each contains a complete sweep of measurement information before executing DIV. The sources and destination may be of different length. The length of traces can vary from 3 to 2048. Variables have a length of one. When sources differ in length, the last element of the shorter source is repeated for the division process. When the sources are longer than the destination, they are truncated to fit. When using TRA, TRB, TRC, or trace range for source, use SNGLS and TS to be sure data reflects one complete sweep. TRDEF required when using user-defined trace. VARDEF required when using user-defined variable.

DL Position a line on the display.

ltem	Description
Step Increment	1 major vertical division
Preset State	DL OFF; DL ODBM

Example Place display line at highest amplitude value of trace A.

150 OUTPUT 723; "MKPK HI;"

160 OUTPUT 723; "DL ON; "

170 OUTPUT 723; "MOV DL, MKA; "

 $Mark\ highest\ amplitude\ value.$

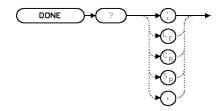
Turn on the display line.


Move the marker value into DL

(predefined variable).

DL

Description The DL command positions a line on the display for visual and computational purposes.


Query Response

See Also TRPST and any amplitude-related commands, such as ROFFSET, MEASURE, RL, LN, LG, INZ and math commands.

DONE

Return a "1" to the controller after the execution of all commands preceding the DONE command.

XDONE

Example Use DONE to delay the execution of additional program commands until the entire measurement range is swept.

160 OUTPUT 723; "TS; DONE?;"

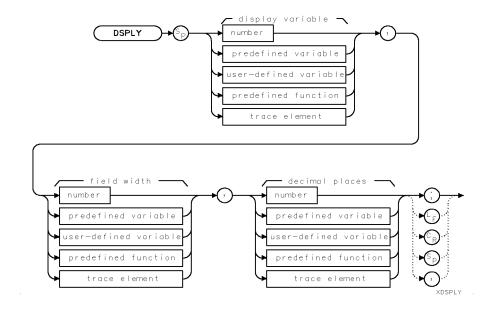
Sweep the measurement range, then send a "1" when the sweep is completed.

170 ENTER 723; A

Assign "1" to computer variable.

Description The DONE command returns a "1" to the controller when all of the commands encountered before the DONE command have executed.

For example, when a DONE? query is followed by an "ENTER" (or computer read) command at some point in the command sequence, the program waits for the spectrum analyzer to return the "1" before executing additional program lines. This function allows the controller to synchronize with the spectrum analyzer.


Query Response

qgennum

DSPLY

Display a variable anywhere on the analyzer display.

ltem	Description
Field width	Determines the number of characters displayed, including digits, sign, and decimal point.
Field-Width Range	1 – 18
Decimal Places	Determines the number of digits to the right of the decimal point.
Decimal-Place Range	For field widths greater than 3, range is from 0 to field width less three. For field widths equal to or less than 3, range is 0 zero .

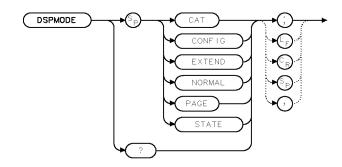
Example

130 OUTPUT 723; "CLRDSP;"

140 OUTPUT 723; "PU; PA 500, 700;"

150 OUTPUT 723; "DSPLY CENTERWL, 12,0;"

Clear graphics. Reset origin to (0,0), and scale to 0 to 1000 for X and Y. Position pen at (500,700).


Display the center wavelength on the analyzer display without decimal values, using a field width of 12. Notice that 11 numbers are displayed. The twelfth character in the data field is sign information.

Description The DSPLY command displays the value of a variable at the current position of the pen, determined by the plot-absolute (PA) or plot-relative (PR) commands or determined by the OR command during the reference-graphics mode. If the value does not fit in the specified parameters, the variable is displayed in exponential notation. DSPLY cannot be executed after DWINDOW ON.

See Also CLRDSP, PA, PR

DSPMODE

Display catalog of user memory contents; HP-MSIB addresses of modules; module-level parameters; or system-level parameters, serial numbers, and revision numbers.

Description ltem Preset State DSPMODE NORMAL

Example

OUTPUT 723; "DSPMODE CAT;"

Display contents of currently selected user memory.

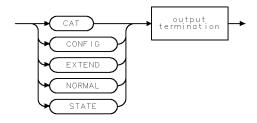
XDSPMD

Description The DSPMODE command lists descriptions of system or module configurations on the analyzer display:

> **DSPMODE CAT** displays the contents of the currently selected user memory. Listed are any user-defined functions, variables, traces, files, and the name and byte size of each entry. The size of traces A, B, and C are also provided if internal memory is selected.

> DSPMODE CONFIG describes the placement of the optical spectrum analyzer module in the system by its HP-MSIB address (row and column number).

> DSPMODE EXTEND displays module-level parameters for each module in the system.

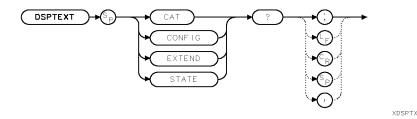

DSPMODE NORMAL activates the normal analyzer display where the graticule and swept responses are shown.

DSPMODE PAGE displays the next "page" of information, if any. Execute it when previous executions of DSPMODE provide more than one page of information.

DSPMODE STATE lists the current state of the system-level parameters under operator control, such as wavelength ranges and bandwidth settings. It also lists the identification and serial numbers, and firmware revision of the spectrum analyzer.

Use the DSPTEXT command to send the listings shown on the analyzer display to the computer. To view the catalog of the desired mass storage device, (HP-IB device, HP-MSIB device, or internal memory), execute MSI before executing DSPMODE CAT. Internal memory is the storage device when power is applied to the spectrum analyzer. Execute DSPMODE PAGE after DSPMODE CAT, DSPMODE CONFIG, DSPMODE EXTEND, or DSPMODE STATE has been executed.

Query Response



qdspmd

See Also DSPTEXT, MSI

DSPTEXT

Query catalog of user memory contents; HP-MSIB addresses of modules; module-level parameters; or system-level parameters, serial numbers, or revision numbers.

Example

OUTPUT 723; "DSPTEXT CAT?;"

Query listing of contents of currently selected user memory.

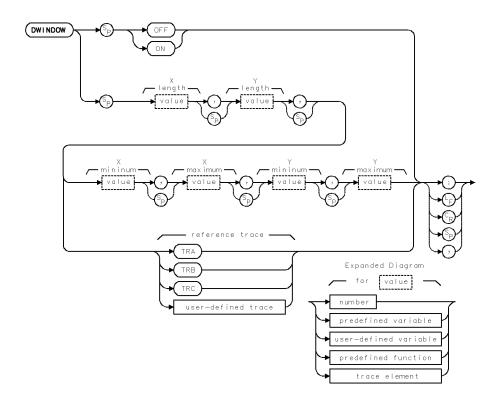
Description The DSPTEXT command sends system-level or module-level information to the computer. The information sent duplicates the information displayed on the analyzer display with the DSPMODE command or the catalog & MSI key. Each line of data is sent as one record separated by a line feed.

> **DSPTEXT CAT?** sends the contents of the currently selected user memory. Listed are any user-defined functions, variables, traces, or files. Also listed are the name and byte size of the trace registers for traces A, B, and C. To send the catalog of the desired mass storage device, (HP-IB device, HP-MSIB device, or internal memory), execute MSI before executing DSPTEXT CAT. Internal memory is the storage device when power is applied to the spectrum analyzer.

DSPTEXT CONFIG? sends the placement of the optical spectrum analyzer module in the system by its HP-MSIB address (row and column number).

DSPTEXT EXTEND? sends module-level parameters for each module in the system.

DSPTEXT STATE? sends the current state of the system-level parameters under operator control, such as wavelength ranges and bandwidth settings. It also sends the identification and serial numbers, and firmware revision of the spectrum analyzer.


qgenchar

Query Response

See Also MSI, CATALOG, DSPMODE

DWINDOW

Define alternate scale for graphics.

ltem	Description
X-Length Range	—32,768 - 32,767, in units set by SCALE command.
Y-Length Range	—32,768 - 32,767, in units set by SCALE command.
X-Minimum Range	_32,768 to +32,767
X-Maximum Range	_32,768 to +32,767
Y-Minimum Range	_32,768 to +32,767
Y-Maximum Range	_32,768 to +32,767
Preset State	DWINDOW OFF

```
Example Draw Y = X^2 on the analyzer display.
```

```
CLEAR 723
180
                                           Initialize analyzer.
     OUTPUT 723; "IP;"
190
200 OUTPUT 723; "CLRDSP;"
                                           Clear graphics from memory.
210 OUTPUT 723; "TRDSP TRA,OFF;"
                                            Turn off trace A.
220
    OUTPUT 723; "OR 600,550;"
                                           Set origin to (600,550) in current scale
                                           units. (CLRDSP sets units of X and Y axis
                                           from 0 to 1000.)
```

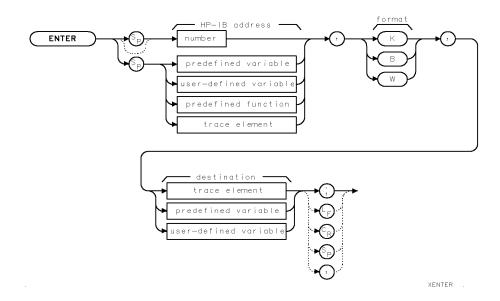
230 OUTPUT 723; "DWINDOW 400,400,-10,10,0,100;"

370 OUTPUT 723; CHR\$(130); "\$;"

Define a graphics window that is square and has sides 400 units long, in units determined by CLRDSP above. The window itself contains its own scale. The minimum and maximum value for its X axis are -10 and 10. The minimum and maximum values for its Y axis are 0 and 100.

```
240
     OUTPUT 723; "PU; PA -10,0;"
                                            Outline the window.
250
     OUTPUT 723; "PD; PA -10, 100, 10, 100, 10, 0, -10, 0; "
260
     OUTPUT 723; "VARDEF XXIS, -10;"
                                                Assign - 10 to a user-defined variable.
270
     OUTPUT 723; "VARDEF YAXIS, 0;"
                                                Assign 0 to a user-defined variable.
280
     OUTPUT 723; "PU; PA -10, 100; PD; ";
                                                Place the pen at (-10,100) in window
                                                units.
290
     OUTPUT 723; "REPEAT;";
                                                Begin repeat loop.
300
     OUTPUT 723; "ADD XXIS, XXIS, 1;";
                                                Add 1 to XXIS.
310
     OUTPUT 723; "MPY YAXIS, XXIS, XXIS;";
                                                Set YAXIS equal to (XXIS).
320
     OUTPUT 723; "PA XXIS, YAXIS;";
                                                Draw square function point-by-point.
330
     OUTPUT 723; "UNTIL XXIS, EQ, 10;"
                                                End repeat loop when XXIS equals 10.
340
     OUTPUT 723; "PU; PA -2,80;"
                                                Place pen at (-2,80) in window units.
350
     OUTPUT 723; "DWINDOW OFF;"
                                                Turn off the window. Window param-
                                                eters are retained in memory. The fol-
                                                lowing TEXT command does not oper-
                                                ate when the window is on.
360 OUTPUT 723; "TEXT$Y=X"
                                                Write text at current pen position.
```

Description The DWINDOW command creates a new coordinate system that repositions. magnifies or reduces graphics on the analyzer display. This new coordinate system is called a graphics window. DSPLY, GRID or TEXT cannot be executed after DWINDOW ON . DWINDOW defines the size and scale of the graphics window. The size of the window is determined by X Length and Y Length, which are specified in the current scale units. (Scale units are 0 to 1000 for both X and Y unless specified otherwise with the SCALE command.) The scale of the coordinate system within the window is determined by X Minimum, X Maximum, Y Minimum, and Y Maximum.


DWINDOW

The position of the window on the analyzer display is specified with the OR command. Use DWINDOW to display custom graphics created with the plotting commands (PA, PR, PD, PU, MK) or to display trace information with the GRAPH command. If custom graphics are displayed, *X Minimum*, *X Maximum*, *Y Minimum*, and *Y Maximum* scale the coordinate system of the window in increments. DWINDOW cannot be used when displaying variables, grids, or text with the DSPLY, GRID, or TEXT commands.

See Also SCALE, OR, TRCOND, SCALE, GRAPH, IT, PA, PR, PD, PU, MK

ENTER

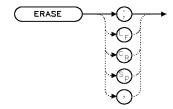
Receive data over HP-IB as a controller.

ltem	Description
HP-IB Address Field	specifies the HP-IB address of the device.
HP-IB Address Range	0 - 30
Format field	Formats the queried data.
K	Expects real, free-field numbers ASCII decimal .
B byte	Expects a single 8-bit byte.
W word	Expects two 8-bit bytes.

Example Use the analyzer to control an HP 3478 multimeter via HP-IB. Run the program, then press the user-defined key, VDM, to communicate with the multimeter.

150	REMOTE 7	Place all devices in remote status.
160	CLEAR 723	Initialize analyzer.
170	OUTPUT 723;"IP;"	
180	OUTPUT 723; "VARDEF NN, 0; ";	Assign 0 to user-defined variable, NN.

ENTER


190	OUTPUT 723; "FUNCDEF VDM, ^";	Begin definition of user-defined function, called VDM.
200	OUTPUT 723; "OUTPUT 25, K, \$H5\$;";	Send message, "H5" to multimeter.
210	OUTPUT 723; "ENTER 25, K, NN;";	Receive value in amperes from multimeter. Store value in NN.
220	OUTPUT 723; "CLRDSP;";	Clear graphics from memory.
230	OUTPUT 723; "PA 400,500;";	Set pen at (400,500).
240	OUTPUT 723; "MPY NN, NN, 1000; ";	Convert queried value to milliamperes.
250	OUTPUT 723; "DSPLY NN,7,4;";	Display value on analyzer display.
260	OUTPUT 723; "RELHPIB; ";	Release control of HP-IB.
270	OUTPUT 723; "^;"	End definition of user-defined function.
280	OUTPUT 723; "KEYDEF 7, VDM, \$ VDM\$;"	Assign function to user-defined key, called
		VDM.
290	LOCAL 723	Place analyzer in local control. Press
		$(\overline{ ext{USER}})$, then press the user-defined key,
		$ extsf{VDM}, to communicate with the multimeter.}$
300	SEND 7; UNT UNL DATA	Releases control of the HP-IB and clears
		HP-IB of all talkers and listeners.

Description The ENTER command establishes the analyzer as a controller on HP-IB. Use ENTER to request data from an HP-IB device. Since HP-IB allows only one controller on HP-IB, the execution of ENTER must be either synchronized with computer operation or incorporated into user-defined functions that are executed with keys. Execute RELHPIB to discontinue analyzer control of HP-IB.

See Also RELHPIB, VARDEF

ERASE

Erase all memory, including internal memory and reserved memory, serial numbers, correction factors, and all analyzer settings.

XERASE

Example

10 OUTPUT 723; "ERASE;"

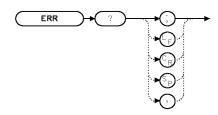
Erase all memory, except factory calibration data stored in ROM.

Description The ERASE command erases all memory, except factory calibration data stored in ROM. ERASE destroys any stored conditions that may explain faulty operation and aid in troubleshooting. The information that is erased is listed below:

- Memory data protected by the PSTATE or PROTECT command.
- The contents of internal memory. Internal memory contains user-defined variables, traces, functions, keys, on-end-of-sweep algorithms, and files).
- The contents of reserved memory. Reserved memory contains serial-number information, correction factors, offsets, trace data, the limit-line table, and all analyzer settings.
- The contents of the input buffer holding unexecuted commands (including any commands immediately following ERASE).

ERASE also sets the predefined variable, NSTATE, equal to 2.

Use ERASE for security applications to destroy all previous instrument history.


After executing ERASE, (1) cycle power, or (2) press the (INSTR) key; or (3) press (DISPLAY), NEXT INSTR.

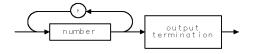
The ERASE command does not affect memory external to the spectrum analyzer, such as memory in the display, memory card, or HP-IB device.

ERR

Send numeric codes that describe the nature of errors.

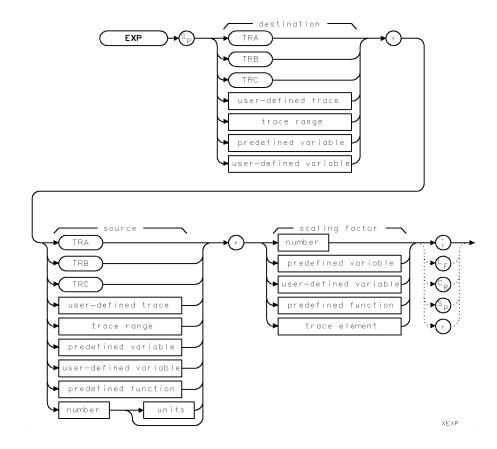
70 ENTER 723; Error_numbers\$

XERR


Store error codes in computer array.

20	CLEAR 723	Initialize analyzer.
30	OUTPUT 723;"IP;";	
40	ALLOCATE Error_numbers\$[50]	Create 50-element array in computer for
50	OUTPUT 723; "SAVES 1; VIEW; "	the storage of any queried analyzer errors. Send two faulty commands to analyzer
		Execute SAVES using out-of-limit parame- ter. Use the VIEW command with incorrect
		syntax.
60	OUTPUT 723; "ERR?;"	Send analyzer codes to the computer.

Description The ERR command sends numeric codes (to the computer) that describe the nature of errors, if any have occurred.


> Error codes are stored in the error register as they occur. ERR sends codes as long as they are in the register. If none are present, ERR sends "0" (zero). Instrument preset (IP) clears the error register.

Query Response

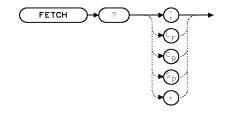
See Also IP

EXP Divide by N, retain quotient, then store 10quotient.

ltem	Description
Source or Destination Amplitude Range	0 to 10,000 measurement units for linear trace data in <i>TRA, TRB, TRC, trace range</i> , or <i>user-defined trace</i> .
	$-32,768$ to $+32,767$ measurement units for logarithmic trace data in TRA, TRB, TRC, trace range, or user-defined trace. \pm 1.8 \times 10 $^{30.8}$ when using number, predefined variable, or user-defined variable.
Source-Length Range	1 – 2048 position units. Default is 800 position units when using <i>TRA</i> , <i>TRB</i> , <i>TRC</i> . Truncated if longer than destination length. If shorter than destination length, last element is extended for operation.
Destination-Length Range	1 - 2048 position units.

Example

60 OUTPUT 723; "EXP P_MW, MKA, 10;"


Description The EXP command first divides the source by the scaling factor, then uses the quotient as an exponent of 10:

 $destination = 10^{(source/overscaling\ factor)}$

Be sure data reflects one complete sweep when using TRA, TRB, TRC, or trace range for source by using SNGLS and TS.

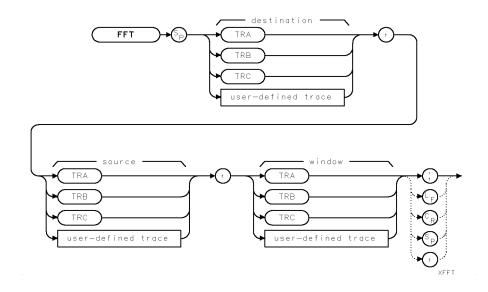
FETCH

Query trace data before end-of-sweep.

XEETCH

Example

20 OUTPUT 723; "FETCH?; "


Description The FETCH command initiates a sweep and sends the contents of trace data in binary format, as it sweeps, to the computer.

The TRA, TRB, and TRC commands differ because they usually follow the TS command. As a result, the trace data is returned to the computer at the completion of a sweep.

Query Response

FFT Execute fast Fourier transform.

ltem	Description
Window-Length Range	Equals source length.
Source-Length Range	1 - 2048. Default for TRA, TRB, TRC is 800.
Destination-Length Range	Equals source length.

Example Connect a 750 nm signal to analyzer input.

120	CLEAR 723	$Initialize\ analyzer.$
130	OUTPUT 723;"IP;";	
140	OUTPUT 723; "CLRDSP;";	
150	OUTPUT 723; "CENTERWL 750NM;"	Set center wavelength.
160	OUTPUT 723; "SP 0; ST 50MS; "	Set span to zero. Set sweep time.
170	OUTPUT 723; "TWNDOW TRC, FLATTOP;"	Place the window algorithm, FLATTOP,
		$into\ trace\ C.$
180	OUTPUT 723; "CLRW TRB;"	$Clear ext{-}write\ trace\ B$
190	OUTPUT 723; "BLANK TRA;"	$Blank\ trace\ A.$
200	OUTPUT 723; "SNGLS; TS;"	Activate single-sweep mode and sweep
		trace B.

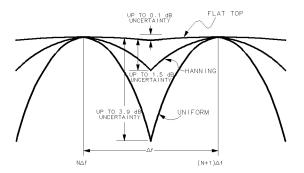
```
210 OUTPUT 723; "FFT TRA, TRB, TRC;"
                                             Weight trace B with trace C data, then
                                             perform Fourier transform. Store re-
                                             sults in trace A.
     OUTPUT 723; "BLANK TRB;"
220
                                             Blank trace B
     OUTPUT 723; "VIEW TRA;"
230
                                             Store and view trace A.
     OUTPUT 723; "MKN;"
240
                                             Place a marker at the center of trace A.
250
     OUTPUT 723; "HD;"
                                             Blank active function readout.
```

Description The FFT command performs a discrete Fourier-series transform on the source-trace array, then stores the logs of the magnitudes of the results in the destination array as follows:

- 1. The source trace is lengthened with zero-amplitude elements if it is shorter than the destination trace.
- 2. The amplitude of the source trace is weighted according to the window algorithm.
- 3. The Fourier transform is performed.

Only magnitude components are stored. No phase or sign information is preserved in the results. Because of aliasing, the FFT command computes only the values of the even points of the destination trace. The odd values are obtained by interpolation. The source trace is sent unchanged. Four predefined window algorithms are available with the TWNDOW command. In addition, you can create your own with the TRA, TRB, or TRC command. For maximum precision, the peak values of user-created windows should approach 32.767. The window trace may contain negative values (to -32,768) but they do not increase weighting resolution. The values in the window trace are treated as fractional numbers. The average window value is computed and used to correct (normalize) the results in absolute units.

Remember


What to • Be sure trace data reflects one complete sweep measured with a 0 nm span. SNGLS and TS suggested.

Execute FFT

- When You TWNDOW (Hanning, Hamming, uniform, flat-top) required when using TRA, TRB, or TRC. Use TWNDOW to select a weighting function (trace window) from one of the four available algorithms, or create your own with the TRA, TRB, and TRC commands.
 - The lengths of the source and window traces must be equal and greater than four position units.
 - Transform traces that have been measured during zero span mode.

Trace Windows The FFT algorithm assumes the source trace array is one period of an infinitely long string of concatenated, duplicate arrays. Thus, the beginning and end elements of the source trace array must gradually diminish to zero amplitude. If the end points of the original trace array are of different magnitude, the resulting array series could contain discontinuities that introduce high wavelength components into the Fourier transform. The TWNDOW command offers four weighting algorithms that gradually reduce the amplitude at the ends of the source-trace array to zero.

> The TWNDOW command formats trace arrays with one of the four algorithms: HANNING, HAMMING, UNIFORM, and FLATTOP. Each simulates a series of equally spaced filters. The detected, spectral line traces the top of the passband while moving from N Δ f to (N+1) Δ f.

Hanning, Flat Top, and Uniform Trace Windows (Hamming not shown)

The amplitude and wavelength uncertainty of the Fourier-transformed display depends on the choice of trace windows, and the analyzer sweep time. Amplitude uncertainty is maximum when the spectral component falls midway between the filter shapes. (See preceding figure.) Passbands that are flatter in shape, like the FLATTOP filter, contribute less amplitude uncertainty, but wavelength resolution and sensitivity are compromised.

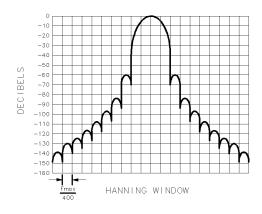
The UNIFORM window algorithm has the least wavelength uncertainty and greatest amplitude uncertainty. Its worst case accuracy uncertainty is -3.9dB and its 3-dB resolution bandwidth is 60% of the HANNING bandwidth. The UNIFORM window does not contain time-domain weighting and leaves the data alone. Use it for transforming noise signals or transients that decay within one sweep time period. The UNIFORM window yields the best

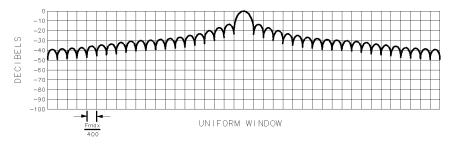
wavelength resolution, but also produces the highest side lobes for periodic signals.

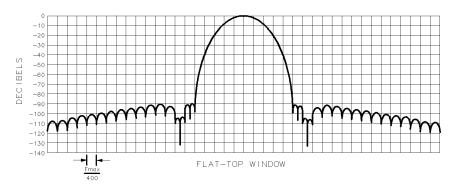
The FLATTOP window has the greatest wavelength uncertainty of the windows, but it has outstanding side lobe suppression and amplitude flatness. Use FLATTOP to transform periodic signals.

The HANNING window is a traditional passband window found in most real-time analyzers. The HANNING window offers a compromise between the FLATTOP and UNIFORM windows. The HANNING window amplitude uncertainty is -1.5 dB and its 3-dB bandwidth is 40% of the FLATTOP bandwidth. Use the HANNING window when transforming periodic or random data

The HAMMING window has a bandwidth between the HANNING and FLATTOP windows, with more uniform side-lobe suppression than the HANNING window, but less suppression than either HANNING or FLATTOP for signals farther out of the passband.

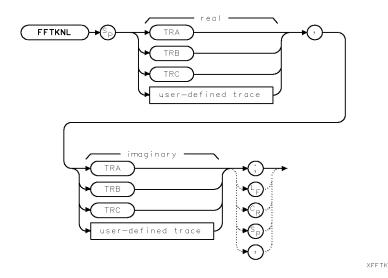

Interpreting The FFT results are displayed on the spectrum analyzer in a logarithmic Displayed scale. The frequency at the left graticule line is 0 Hz. The maximum Results $frequency(F_{max})$ at the right graticule line equals the inverse of the sample rate, divided by two. Thus, a 20-millisecond sweep time yields a display spanning 20 kHz:


> $F_{max} = 1/|sample rate| \div 2$ $F_{\text{max}} = 1/[|\text{sweep time}| \div N] \div 2$ $F_{\text{max}} = 1/[20 \text{ ms} \div 800] \div 2$ $F_{max} = 20 \text{ kHz}$


Where

N equals number of elements in trace array containing amplitude information. 800 is assumed.

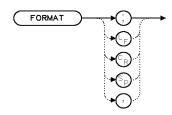
Fourier transforms of the predefined weighting algorithms are shown on the following graphs. Use these graphs to estimate resolution and amplitude uncertainty of a Fourier-transform display. Each horizontal division of the graphs equals 1/(sweep time) or $F_{\text{max}} \div 400$, which can be calculated from the previous equations.



Fourier Transforms of Hanning, Flat Top, and Uniform Trace Windows

FFTKNL

Perform a 16-bit discrete Fourier transform.



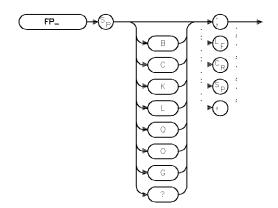
Example 20 OUTPUT 723; "FFTKNL TRA, TRB;"

Description The FFTKNL performs a discrete Fourier transform on the specified traces, overlaying them with the results. Both traces must be the same length and the length must be a power of two. The two traces represent the real and imaginary components of one complex-value trace. FFTKNL does no other normalizing, scaling, clipping, or magnitude determination.

FORMAT

Erase and format the currently selected memory device.

XEORMA


Example

OUTPUT 723; "FORMAT;"

Description The FORMAT command formats and erases the currently selected memory device. Internal memory is selected automatically when power is applied to the spectrum analyzer. To select another memory device, execute MSI. When internal memory is selected, FORMAT erases all unprotected files from internal memory. (Refer to the PROTECT and PSTATE commands for additional information.) When a memory card is selected, FORMAT erases all entries on the memory card. Use format to initialize new memory cards. Memory cards are formatted with the logical interchange format (LIF). When a disk drive is selected, FORMAT erases all entries on a floppy disk and initializes it. All new memory cards need to be formatted.

See Also MSI, PROTECT, PSTATE

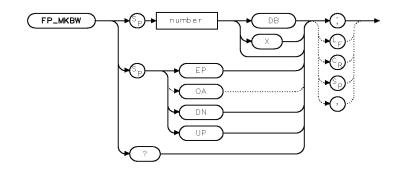
FP_ Start the FP laser characterization measurement DLP.

xckb11 .

Argument	Definition
?	Queries the DLP and returns the numerical equivilants of the parameters listed below:
	mean wavelength peak wavelength mode spacing (M) mode spacing (Hz) FWHM (full-width, half-maximum) or envelope bandwidth, if envelope distribution is selected peak amplitude total power sigma
В	Turns on or off the view of the peaks used in the calculations
\mathbf{C}	Turn on or off the view of the distribution trace
K	Select Gausian distribution
L	Select Lorenzian distribution
О	Turn on or off the calculations

Ç			Exit the measu	rement DLP
G			Select envelope	e distribution
Example	10 20 30 40 50	OUTPUT OUTPUT OUTPUT	723; "IP; "; 723; "FP_; "; 723; "FP_ C; "; 723; "FP_ K; "; 723; "FP_ Q; ";	Preset the instrument. Start the FP characterization measurement. Turn on, the view of the distribution trace. Display the results in the Gausian distribution. Exit the FP characterization measurement DLP.

Description The FP_ command automatically measures the characteristics of a Fabry-Perot laser source. Refer to the HP 71450B/1B/2B User's Guide for additional information.

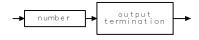

Query Response

See Also FP_TH

FP_MKBW

Set FP laser envelope bandwidth amplitude.

x f pmk b w

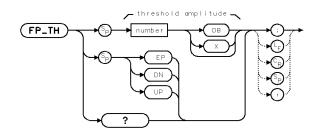

ltem	Description
Preset State	−3.0 dB from peak

Example

10 OUTPUT 723; "IP;"; Preset the instrument.
20 OUTPUT 723; "FP_;"; Start the FP measurement.
30 OUTPUT 723; "FP_ C;"; Display the distribution.
40 OUTPUT 723; "FP_ G;"; Select envelope distribution.
50 OUTPUT 723; "FP_MKBW -6 DB;"; Set bandwidth amplitude to -6 dB

Description The FP_MKBW command allows the bandwidth to be measured at selected amplitude levels down from the peak. If FP_MKBW is set to -6 dB, the envelope bandwidth is measured at 6 dB down from the peak. This command is only available when envelope distribution (FP_ G) has been selected.

Query Response



qgennum

See Also FP_

FP_TH

Set or query the Fabry-Perot laser threshold amplitude.

ckb14

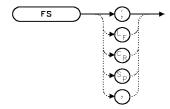
ltem	Description
FP_TH?	Queries the DLP and returns the preset threshold value
Preset State	—90 dB from peak

Example

- OUTPUT 723;"IP;"; 10
- Preset the instrument. Start the FP_ measurement DLP.
- OUTPUT 723; "FP_;"; 20 30 OUTPUT 723; "FP_TH?; ";
- Query the instrument for the current threshold amplitude setting of the Fabry-Perot laser.
- OUTPUT 723; "FP_TH -20 DB;";
- Set the threshold amplitude for measured peaks to -20 dB

Description The FP_TH command allows measurements using only the peaks above the threshold. (All signals above the threshold are used in the calculations.) The threshold is relative to the peak mode. If FP_TH is set to -20 dB, only those peaks greater than 20 dBc are used in the power calculations. Refer to the HP 71450B/1B/2B User's Guide for additional information.

Query Response



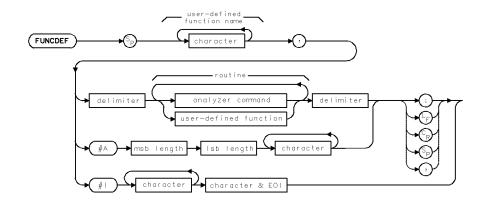
ggennum

See Also FP_

FS

Activate full measurement range (wavelength).

XFS


Example 10 OUTPUT 723; "FS;"

Description The FS command activates the widest measurement range allowed by the optical spectrum analyzer, setting the start and stop wavelengths to their minimum and maximum values.

See Also SS, STARTWL, STOPWL, CENTERWLSS, SP, CENTERWL, WLOFFSET

FUNCDEF

Define a list of analyzer commands that are executed as a user-defined function.

ltem	Description
Function-Name Range	1 - 12 characters: A - Z, O - 9, and underscore _ . First character
	must be a letter. Numbers must be preceded by underscore.

Example Create a user-defined function, then assign it to a user-defined key.

- 5 CLEAR 723
- 7 OUTPUT 723;"IP;"
- 10 OUTPUT 723; "VARDEF H_SPAN, 0;"
- 20 OUTPUT 723; "FUNCDEF S_HIFT, ~";

Initialize analyzer.

Define user-defined variable equal to 0.

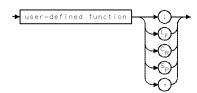
Create user-defined function, called S_HIFT. Shift divides the span by two and adds the results to the center wavelength. This increases the measurement range. The "" delimit the definition.

- 30 OUTPUT 723; "DIV H_SPAN, SP, 2; ";
- 40 OUTPUT 723; "ADD CENTERWL, CENTERWL, H_SPAN;";
- 50 OUTPUT 723; "^;"
- 60 OUTPUT 723; "KEYDEF 7,S_HIFT, %SHIFT_UP%;"

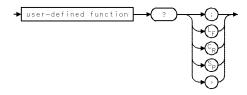
Assign the user-defined function to a user-defined key, called SHIFT_UP.

70 OUTPUT 723;"DSPMODE CAT;"	Display catalog of currently selected user memory. Notice the listing includes the S_HIFT function and
	SHIFT_UP key.
80 OUTPUT 723; "CENTERWL 1300NM; SP 10NM;"	
90 LOCAL 723	Press USER to access SHIFT_UP
	key.
100 OUTPUT 723:"S HIFT:"	Execute function from the computer.

Description The FUNCDEF command defines a routine consisting of spectrum-analyzer commands, assigns it a label, then stores the routine and its label in internal memory. FUNCDEF does not execute the routine. FUNCDEF stores the routine. After FUNCDEF is executed, the routine is executed whenever the function name is encountered. The function name and the list of commands it executes form a user-defined function. Once user-defined functions are stored, they can be executed with the front-panel keys, with other user-defined functions, or with computer programs (as you would other spectrum-analyzer commands).


> Delete user-defined functions from internal memory with the DISPOSE command. Use the PROTECT command to prevent inadvertent erasure with DISPOSE. PURGE and FORMAT also erase user-defined functions. PROTECT does not prevent erasure or overwriting with the PURGE, LOAD, RCLD, or ERASE command.

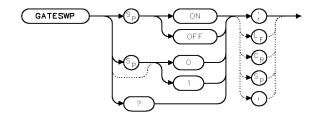
Use ABORT to stop operation of user-defined functions. Use IF/THEN, REPEAT/UNTIL, or RETURN to alter their operation.


Do not use existing user-defined function names or reserved words as labels for user-defined functions. Do not execute a user-defined function within its FUNCDEF statement.

When using string- and block-data fields to transfer command definitions, be sure to use compatible terminators. Also, any block-field commands within the list must be the absolute type (#A-block), because the EOI terminator of the #I-block type terminates the entire FUNCDEF command prematurely.

Syntax to Execute a User-Defined Function

Query Syntax Requests the definition of the function.

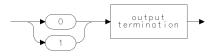

Query Response Returns the definition of the function.

See Also DISPOSE, FORMAT, LOAD, RCLD, PROTECT, PURGE

GATESWP

Enable time-gated measurements.

ltem Description Preset State OFF


Example

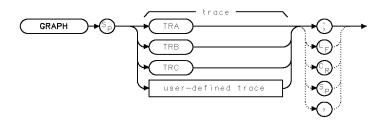
OUTPUT 723; "GATESWP ON;"

Description The GATESWP command enables measurements to be gated by a signal that is input to the module's rear-panel EXT TRIG IN connector. When the external trigger input is at a high logic level (TTL), measurement data is used for the display. When the external trigger is low, the displayed sweep continues and trace points are displayed at the bottom of the screen. (The trace data value is loaded with a minimum value.) To properly display the data, use the MXMH command to place the trace in maximum hold.

> During zero-span sweeps, gated sweeps can be configured so that the trace points are displayed only when the external trigger signal is high. That is, the sweep stops whenever the trigger signal is low. To use this feature, set the video bandwidth to manual mode (VB MAN). Be aware that this can result in two adjacent points being separated by an unknown amount of time.

Query Response

qgen0


Language Reference **GATESWP**

See Also MXMH

XGRAPH

GRAPH

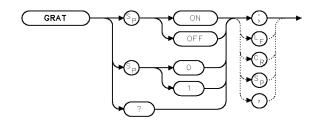
Draw trace information inside a window created with the DWINDOW command.

Trace-length Range 3 -2048 position units. Default for TRA, TRB, TRC is 800 position units.

Trace-Amplitude Range For linear trace data, 0 - 10,000 measurement units.

For logarithmic data, - 32,768 - +32,767 measurement units.

Example	10	OUTPUT	723; "CLRDSP;"	Clear graphics from memory. Reset origin to 0,0 and scale to 0 to 1000 for X and Y.
	20	OUTPUT	723;"IWINDOW 1000,600;"	$\it Reduce size of analyzer trace and graticule.$
	30	OUTPUT	723;"MXMH TRA;"	$Retain\ maximum\ values\ of\ trace\ A.$
	40	OUTPUT	723;"OR 0,600;"	Set origin to 0,600.
	50	OUTPUT	723;"LINET 7;"	Select line size for drawing.
	60	OUTPUT	723; "PD; GRID 100,30,10,10;"	$Draw\ grid.$
	70	OUTPUT	723; "DWINDOW 1000, 300, TRA;"	Create a window scaled to display
				$trace\ A.$
	80	OUTPUT	723;"TS;"	$Sweep\ trace\ A.$
	90	OUTPUT	723;"LINET;"	Select solid line for drawing.
	100	OUTPUT	723;"PU;PA 1,TRA[1];"	$Place\ pen\ at\ starting\ point\ of\ trace\ A.$
	110	OUTPUT	723;"PD;GRAPH TRA;"	Place pen down and draw trace A in window (at top of display).
	120	OUTPUT	723;"CLRW TRB;"	Measure with trace B (in active area at bottom of display).
	130	OUTPUT	723; "BLANK TRA;"	$Blank\ trace\ A.$


Description The GRAPH command draws previously stored measurement results, sized according to the current scale units determined by the SCALE command. or the DWINDOW command if GRAPH is used with DWINDOW. If no units are specified, the default scale units are 0 to 1000 for both X and Y (set by CLRDSP). Use PD to place pen down, except during reference-graphics mode.

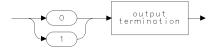
> The graph can be drawn at the current pen position, or can be positioned with the OR command during the reference-graphics mode. For example, in the preceding example, lines 100 and 110 can be replaced with IT 1; GRAPH TRA;. Notice that the PD command is required except during the reference-graphics mode.

See Also TRCOND, CLRDSP, DWINDOW, SCALE, IT

GRAT

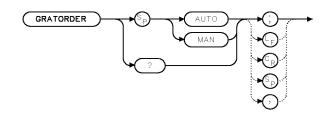
Turn on and off the display of the graticule.

xgrat


ltem	Description
Preset State	GRAT ON

Example

10 OUTPUT 723; "GRAT OFF;"


 $Turn\ o\!f\!f\ the\ graticule.$

Query Response

qgen0

GRATORDER Select reflection order of analyzer's internal diffraction grating.

XGTODR

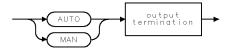
ltem	Description
Preset State	AUTO
Wavelength Crossover	900 nm

Example

10 OUTPUT 723; "GRATORDER MAN;" Select only the first order.

Description Use the GRATORDER command to manually select the first or second reflection order of the optical spectrum analyzer's diffraction grating. The diffraction grating is located in the optical spectrum analyzer's internal monochromator. Normally, the optical spectrum analyzer automatically selects the proper reflection order. The following list describes the conditions you can expect:

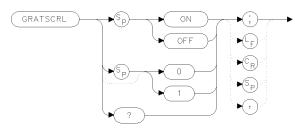
- If GRATORDER is set to MAN mode, the analyzer is locked into first-order diffraction grating.
- If GRATORDER is set to AUTO mode, and the stop wavelength is less than 900 nm (RES BW = 10 nm), the analyzer selects first-order diffraction grating.
- If GRATORDER is set to AUTO mode, and the stop wavelength is less than 900 nm (RES BW < 10 nm), the analyzer selects second-order diffraction grating.


GRATORDER

Whether $1^{\rm st}$ or $2^{\rm nd}$ order diffraction-grating mode is selected depends on the following instrument conditions:

Full λ span	$\dots \dots 1^{\mathrm{st}}$ order
Stop $\lambda > 900 \text{ nm} \text{ (RES BW } \neq 10 \text{ nm)} \dots$	
Stop λ < 900 nm (RES BW = 10 nm)	$\dots \dots 1^{st}$ order
Stop $\lambda < 900 \text{ nm} \text{ (RES BW } \neq 10 \text{ nm)} \dots$	

The optical spectrum analyzer never switches the order during a sweep. In full span ($1^{\rm st}$ order), the monochromator loss near 600 nm will be greater than if $2^{\rm nd}$ order is used.

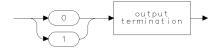

Query Response

qgam

GRATSCRL

Controls the positioning of the displayed horizontal graticule lines.

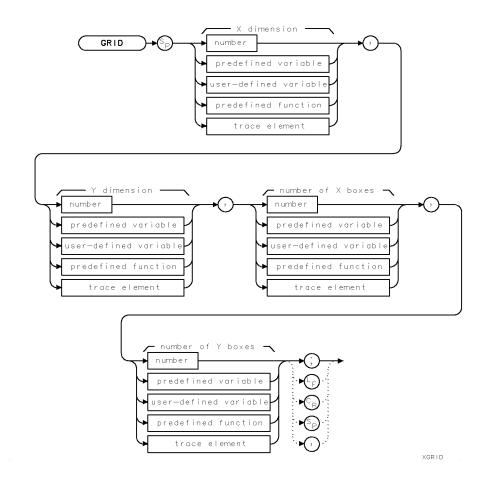
ltem	Description
Preset State	GRATSCRL OFF


Example

100 OUTPUT 723; "GRATSCRL ON;"

Description When a log scale is displayed, the GRATSCRL command positions the horizontal graticule lines on multiples of the current dB-per-div scale. When GRATSCRL is set to off, the horizontal graticule lines are evenly spaced between the bottom and top screen values.

> When a linear display scale is used, the horizontal graticule lines are evenly spaced between the bottom and top screen values regardless of the value of GRATSCRL.


Query Response

qgen0

xgrscl .

GRID Draw a grid on the analyzer display.

ltem	Description
X-Dimension Range	Affected by SCALE command. Default range is 0 - 1000.
Y-Dimension Range	Affected by SCALE command. Default range is 0 - 1000.
Number-of-X-Boxes-Range	Depends on scale resolution.
Number-of-Y-Boxes-Range	Depends on scale resolution.

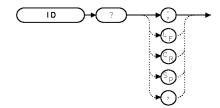
Example	40	OUTPUT 723;"GRAT OFF;"	$Turn\ o\!f\!f\ the\ graticule.$
	50	OUTPUT 723; "SCALE 112,911,17,338;"	$Define\ scale.$
	60	OUTPUT 723;"OR 112,48;"	$Specify\ origin.$
	70	OUTPUT 723;"LINET 7;"	Select dotted line for drawing.
	80	OUTPUT 723:"PD:GRID 160 64 5 4:"	Place pen down Draw large grid

Description The GRID command draws a grid on the analyzer display where the X and Y dimensions specify the horizontal and vertical length of a single box in the grid. Number of X boxes and Number of Y boxes specify the number of boxes on the X and Y axis of the grid. The grid is positioned at the current pen position or at the item origin during the reference-graphics mode. Use PD to place pen down before using GRID. GRID cannot be executed after DWINDOW ON

See Also SCALE, PEN, IT, OR, PA, PR, LINET

HD

Blank the active function readout and disable front-panel numeric data entry.


XHD

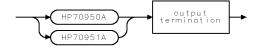
Example	120	CLEAR 723	$Initialize \ analyzer$
Lampie	130	OUTPUT 723;"IP;"	
	140	OUTPUT 723; "CENTERWL 850NM;"	Set center wavelength. Notice that the active
			function area (left side of graticule) displays
			$the\ center\ wavelength\ value.$
	150	OUTPUT 723;"WAIT 4S;"	$Wait\ 4\ seconds$
	160	OUTPUT 723;"HD;"	Blank the active function readout.

Description The HD command blanks the active function readout and disables the front-panel numeric keypad, step keys, and knob, until another active function is executed.

ID

Query the model number (identification) of the system-controlling module.

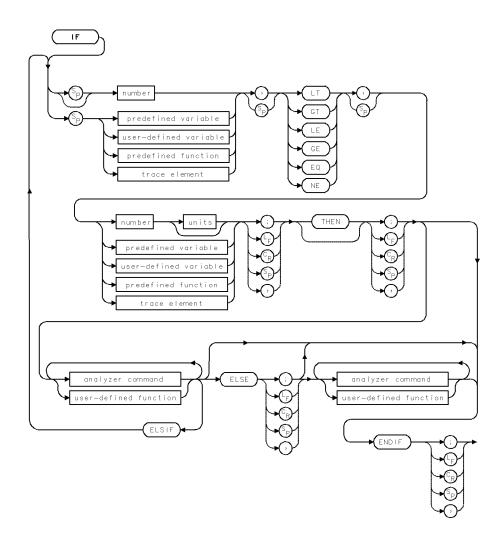
XID


Example

130 OUTPUT 723; "ID?;" 140 ENTER 723; N\$

Query value

Assign value to computer string variable.


Query Response

QID

IF/THEN

Execute a list of commands if conditions of your choosing are met.

IF/THEN

Example Print a message depending on the level of a measured signal.

```
20 CLEAR 723
                                                                 Initialize analyzer.
    OUTPUT 723:"IP:"
    OUTPUT 723; "SNGLS;"
                                                                 Activate single-sweep mode.
50 OUTPUT 723; "PA 250,500;"
                                                                 Set pen position
    OUTPUT 723; "SP 50NM; CENTERWL 750NM;"
                                                                 Set measurement range.
70 OUTPUT 723; "TS; MKPK HI; "
                                                                 Measure, then mark highest signal.
80 OUTPUT 723; "IF MKA, LT, -10.5DBM; THEN; TEXT @FAIL@
90 OUTPUT 723: "ELSIF MKA.GT. - 9.5DBM: THEN: TEXT @FAIL@:"
100 OUTPUT 723; "ELSE TEXT @LEVEL OK.@; ENDIF;"
                                                                 If signal level is between -10.5 and -9.5 dBm,
                                                                 print "LEVEL OK." If otherwise, print "FAIL"
```

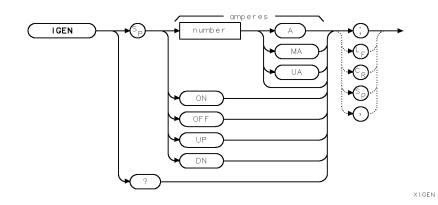
Description The IF/THEN/ELSIF/ELSE/ENDIF commands compare the values of two operands according to the following conditions:

- Less than (LT)
- Greater than (GT)
- Less than or equal to (LE)
- Greater than or equal to (GE)
- Equal to (EQ)
- Not equal to (NE)

The operations are as follows:

If the operand values satisfy the specified condition, the analyzer commands that follow "THEN" are executed. If the specified condition is not satisfied, the analyzer commands that follow "ELSE" or "ELSIF" are executed. The command "THEN" is a no-operation function provided for syntax clarification.

The "IF" and "ELSE" commands delimit two operands and their comparison condition. "ELSIF" delimits an alternate comparison test. "ELSE" and "ENDIF" delimit analyzer commands that are executed if the condition(s) are not satisfied.


"ENDIF" ends the comparison construct.

\mathbf{IGEN}

Turn on the current source.

NOTE

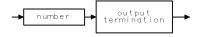
This command is valid only if Option 001, current source, is installed.

ltem	Description
Range	±200 mA but limited by IGENLIMIT
Range Preset State	OFF
Duty Cycle	0.1% to 100%
Duty Cycle Preset State	100%

10 OUTPUT 723; "IGEN 0.100;"

Set the current source to +100 mA.

20 OUTPUT 723; "IGEN ON;"


Turn the current source on.

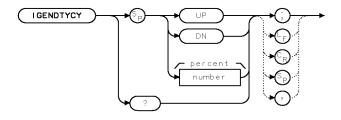
Example

Description The IGEN command turns on the optical spectrum analyzer's current source. The output of the source is available at the rear-panel CURRENT SOURCE connector. When using IGEN to set the current level of the source, enter current values in amperes. The current level applies for both steady state and pulsed operation. (Use IGENDTYCY or IGENPW to enter pulsed mode.)

> The maximum IGEN current available at the output connector is limited by the IGENLIMIT setting. If a value is sent for IGEN that is greater than the IGENLIMIT setting and the analyzer is queried, the value returned is the IGENLIMIT value.

Query Response

qgennum


See Also IGENDTYCY, IGENLIMIT, IGENPW

IGENDTYCY

Set the duty cycle of the current generator pulse mode.

NOTE

This command is valid only if Option 001, current source, is installed.

ltem Description 0—100% |but limited by IGENLIMIT| Range Preset State 100%

Example

OUTPUT 723; "IGENDTYCY 50;"

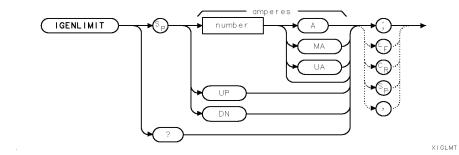
Set the duty cycle to 50%.

Description The IGENDTYCY command selects the duty cycle of the optical spectrum analyzer's current source. The maximum current available at the output connector is limited by IGENLIMIT. Use IGEN to turn on the current source. Normally, the current source is set for a steady dc state (100% duty cycle.) You can set the duty cycle from 0 to 100 percent.

XIGDTY

Query Response

qgennum


See Also IGEN, IGENLIMIT, IGENPW

IGENLIMIT

Set safety limit on current source's output.

NOTE

This command is valid only if Option 001, current source, is installed.

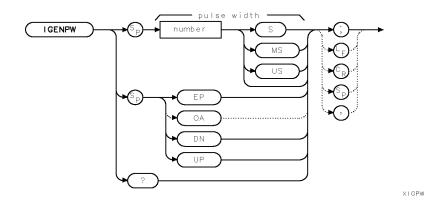
ltem	Description
Range	±200 mA
Preset State	±50 mA

Example

10 OUTPUT 723; "IGENLIMIT 0.10;" Set the limit to $\pm 100~mA$.

Description The IGENLIMIT command sets an absolute limit for the current source. This limit protects a test device from damage if the current setting is too high. If the current setting for the IGEN command is too high, the IGENLIMIT current value is used. When using IGENLIMIT, enter current limit value in amperes (0 to 0.20).

qgennum


See Also IGEN, IGENDTYCY, IGENPW

IGENPW

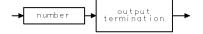
Set the pulse width of the current generator's pulse mode.

NOTE

This command is valid only if Option 001, current source, is installed.

ltem	Description
Range	1.0 μ s to 6.5 ms
Preset State	20 μs

 $Example \qquad {}^{10} \quad {}^{0} UTPUT \; 723; "IGENPW \; 1.0US;" \\$

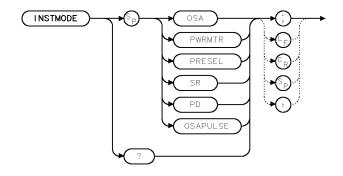

Description The IGENPW command selects the pulse width of the optical spectrum analyzer's current source. Use IGEN to turn on the current generator. Normally, the current source is set for a steady dc state. You can set the pulse width from $1.0\mu s$ to 6.5 ms. Use IGENDTYCY to set the pulse's duty cycle.

> If VB is modified after IGENPW and IGENDTYCY command values are set, use the MSG command to confirm that the UNCAL message is not present, indicating that the amplitude measurement is valid.

Video Bandwidth Setting vs Minimum Pulse Width

VBW	Minimum Pulse Width		
2 MHz	20.0 μs		
800 kHz	20 <i>μ</i> s		
80 kHz	20 <i>μ</i> s		
9 kHz	71 <i>µ</i> s		
800 Hz	800 µs		

Query Response



qgennum

See Also IGEN, IGENDTYCY, IGENLIMIT, MSG

INSTMODE

Select optical spectrum analyzer measurement mode.

x imode

ltem	Description
Requirement	HP 70951A module
Preset State	OSA

Example

OUTPUT 723; "INSTMODE PRESEL;"

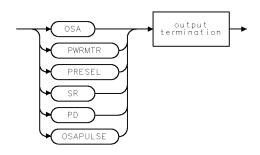
Description The INSTMODE command selects the instrument's operating mode. For HP 71451B instruments all six of the following selections are available. On HP 71450B/2B instruments, only the OSA, SR, and PULSE selections are available:

- OSA (Optical Spectrum Analyzer). This is the preset state and it uses a combination of monochromator and photodiode flatness correction data.
- PWRMTR (Power Meter). The front-panel's PHOTODETECTOR INPUT connector is enabled. Only photodiode flatness correction data is used. Signals connected to this input are detected without passing through the optical spectrum analyzer's monochromator. The AMETER function is turned on. The trace shows data as it is taken.
- OSAPULSE. This option places the optical spectrum analyzer in an operation mode that is optimized for making accurate fast pulse measurements. The range of the internal transimpedance amplifier is

INSTMODE

limited in order to select wide bandwidth and fast settling characteristics. One example of using this mode is measuring the signal-to-noise ratio (SNR) of EDFA systems by measuring the amplified spontaneous emission (ASE) level immediately (10 μ s) after the modulation is turned off.

WARNING

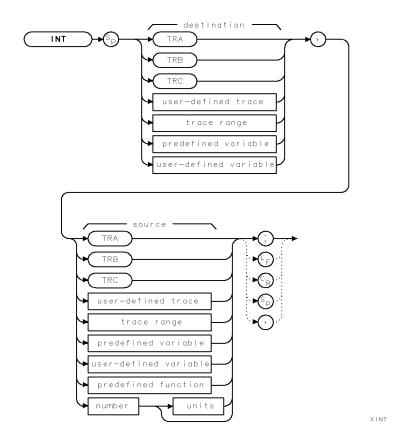

In PRESEL, SR, and PD modes, the input signal passes through the monochromator and is emitted from the front-panel's MONOCHROMATOR OUTPUT connector. The power at the MONOCHROMATOR OUTPUT may be attenuated very little from the power being applied at the MONOCHROMATOR INPUT.

- PRESEL (Preselector). The front-panel's MONOCHROMATOR INPUT and MONOCHROMATOR OUTPUT connectors are enabled. Monochromator and diode flatness correction data only are used. Since in this mode a complete sweep is first taken in OSA mode to place a trace on the screen that represents the expected output power, both monochromator and photodiode correction data is used. In this mode, the optical spectrum analyzer's monochromator can be used to preselect the input optical signal.
- SR (Stimulus-Response). The front-panel's PHOTODETECTOR INPUT and MONOCHROMATOR OUTPUT connectors are enabled. Only monochromator and photodiode flatness correction data are used.
- PD (Photo-diode Test). The front-panel's MONOCHROMATOR INPUT, MONOCHROMATOR OUTPUT, and PHOTODETECTOR INPUT connectors are enabled. In PD mode, a normalization sweep is first taken using correction data for the internal photodiode only. Measurements are then made without correction data being applied. Refer to the following information when making a PD test:
 - 1. Connect a jumper between the MONOCHROMATOR OUTPUT and the PHOTODETECTOR INPUT.
 - 2. Send the STORREF THRU command to store the light source flatness value in trace B.
 - 3. Connect the MONOCHROMATOR OUTPUT to the device-under-test and the diode output to the rear-panel TRANS-Z INPUT.
 - 4. Send the PDMEAS ON command to subtract the light source flatness (trace B) from the detected signal in trace A.
 - 5. The normalized trace results are the diode responsivity where 0 dBm = 1 A/watt.

NOTE

In both SR and PD mode, the use of a broadband spontaneous emissions source is required. Examples of broadband sources include an LED or white-light source.

Query Response



qimode .

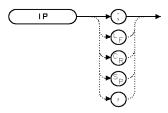
See Also ADCTRG, ADCTRGDLY, CALDATA, CORSEL, OPTSW, MKTUNE, PDMEAS, STORREF, TRNSZLOCK

INT

Compute integer value(s) in source.

ltem	Description	
Source or Destination Amplitude Range	0 - 10,000 measurement units for linear trace data in <i>TRA, TRB, TRC, trace range</i> , or <i>user-defined trace</i> .	
	—32,768 - +32,767 measurement units for logarithmic trace data in <i>TRA, TRB, TRC, trace range</i> , or <i>user-defined trace</i> .	
	\pm 1.8 $ imes$ 10 308 when using <i>number</i> , <i>predefined variable</i> , or user-defined variable.	
Source-Length Range	1 - 2048 position units. Default is 800 position units when using <i>TRA</i> , <i>TRB</i> , <i>TRC</i> . Truncated if longer than destination length. If shorter than destination length, last element is extended for operation.	
Destination-Length Range	1 - 2048 position units.	

Example Obtain the integer value of a number.


130	OUTPUT 723;"ST 2.5S;TS;"	Set sweep time. Sweep.
140	OUTPUT 723;"INT ST,ST;"	Reset the sweep time using the integer value
		$of \ the \ previous \ sweep \ time.$
150	OUTPUT 723;"TS;"	Sweep with the new sweep time.

Description The INT command calculates the largest integer which is less than or equal to the value of the source, then stores the integer in the destination. The MOV and INT commands are the same for trace data, since trace data is in integer form (measurement units) already. Use SNGLS and TS to ensure trace data reflects one complete sweep when using TRA, TRB, TRC, or trace range for

source.

IP

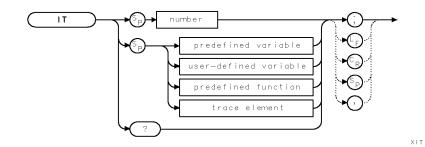
Perform an instrument preset which sets all functions to their preset state.

XIP

Example 10 OUTPUT 723; "IP;"

 $\begin{array}{c} \textbf{Description} & \textbf{The IP command presets the analyzer settings placing the spectrum analyzer} \\ & \textbf{in a known state}. \end{array}$

Programming Commands Affected by Instrument Preset


Command	Preset State/Response	Command	Preset State/Response	
ACTPARM	0 FF	GATESWP OFF		
ADCTRG	OFF	GRAPH	Blank graphics trace.	
ADCTRGDLY	2 <i>μ</i> s	GRAT	GRAT ON	
ADCTRGSYN	AUTO	GRATEDSW	FALSE	
AMB	AMB OFF	GRATORDER	AUTO	
AMBPL	AMBPL OFF	GRID	Blank grid.	
AMC	AMC OFF	HD	HD	
AMPCOR	AMPCOR OFF	IGEN	OFF	
ANNO FF	Annotation is reenabled after IP.	IGENDTYCY	100%	
ANNOT	ANNOT ON	IGENLIMIT	50 mA	
APB	APB OFF	IGENPW	20 <i>μ</i> s	
AUNITS	AUNITS AUTO	INSTMODE	OSA	
AUTOMDB	10 dB/div AUTO	IT	IT 0	
AUTOMSP	100 nm AUTO	IWINDOW	IWINDOW 1000,1000	
AUTORANG	TRUE	LG	LG 10DB	
BLANK	BLANK TRB; BLANK TRC;	LIMIBEEP	LIMIBEEP OFF	
CALCOR	CALCOR ALL	LIMIEDIT	EDIT OFF	
CENTERWL	Set to center of measurement range.	LIMIHALF	LIMIHALF UPPER	
CHOP	ON	LIMIREL	LIMIREL OFF	
CLRDSP	CLRDSP	LIMITEST OFF		
CLRW	CLRW TRA	LINES ON		
CONTS	CONTS	LINET	LINET O	
DEBUG	DEBUG OFF	LN	LN Off	
DL	DL O DBM; DL OFF	MDS W		
DSPLY	Blank displayed variable.	MEASURE SA		
DS PMO DE	DSPMODE NORMAL	MK Blank graphics marker.		
DWINDOW	DWINDOW OFF	MKA	Change value.	
ERR	Clear error register.	MK ACT	MKACT O	
FETCH	Interrupted	MKAL	MKAL O	
FS	Full Span			

Programming Commands Affected by Instrument Preset (continued)

Command	Preset State/Response	Command Preset State/Response		
MK AR	MKAR O	ROFFSET	ROFFSET O	
MKBW	MKBW OFF	SCALE	SCALE 0,1000,0,1000	
MK BWA	-3 dB	SENS	AUTO	
MKN	Change value.	SNGLS	OFF	
MKNOISE	MKNOISE OFF	SP	Set to maximum measurement range.	
MKOFF	Blank markers.	SS	Set to SPAN/10	
MKP	MKP 401, or center of trace	ST	ST AUTO	
MK PAUS E	MKPAUSE O	STARTWL	Set to beginning of measurement range.	
MKPX	MXPX 3DB	STOPWL	Set to end of measurement range.	
MKREAD	MKREAD AUTO	TDF	TDF P	
MKT	Change value.	TEXT	Blank text.	
MKTRACK	MKTRACK OFF	TH	TH -90DBM; TH OFF.	
MKTV	MKTV 5DB	TITLE	Blank title.	
MKTYPE	MKTYPE NORMAL	TM	TM FREE	
MKWL	Change value.	TP	TP 0	
MSG	Blank message.	TRCOND	Change Value	
ONEOS	ONEOS OFF	TRDEF	Traces A, B, C set to 800 points	
ONMENU	OFF	TRDSP	TRDSP TRA,ON	
ONMKR	OFF	TRS TAT	Write, on	
ONUSER	OFF	VAVG	VAVG 100; VAVG OFF	
ONWINDOW	OFF	VB	VB AUTO	
OR	OR 0,0	VIEW	Off	
PA	PA 0,0	VTH	VTH 3DB	
PAUSE	In terrup ted	VTL	VTL -100 DBM	
PEN	PEN O	VW	Blank item.	
PERSIST	PERSIST OFF	WAIT	Interrupted.	
PU	PU	WLLIMIT	MIT WLLIMIT ON	
RB	RB AUTO	WLOFFSET	WLOFFSET OM	
RBR	RBR .01	ZERO	AUTO	
RL	RL -10DBM			
RLPOS	RLPOS 9			

IT

Assign a number to a series of graphics commands for future recall or modification.

ltem	Description	
Item-Number Range	0 - 50, depending on model of display.	
Preset State	IT 0	

Example	150	CLEAR 7	723	$Initialize\ analyzer.$
p	160	OUTPUT	723; "IP;"	
	170	OUTPUT	723; "CLRDSP;"	Clear graphics from memory.
	180	OUTPUT	723; "TRDSP TRA, OFF;"	$Turn\ off\ trace\ A.$
	190	OUTPUT	723;"IT 1;VW OFF;"	Address item 1 and blank it. This way, item 1 is not displayed while it is being created.
	200	OUTPUT	723; "TEXT\$This is ";	$Define\ item\ 1\ as\ text.$
	210	OUTPUT	723; "the contents of ";	
	220	OUTPUT	723;"item 1.\$;"	
	230	OUTPUT	723;"IT 2;VW OFF;"	$Address\ item\ 2\ and\ blank\ it.$
	240	OUTPUT	723; "GRID 10,20,10,5;"	Define item 2 as a grid.
	250	OUTPUT	723;"IT 1;OR 300,900;"	Address item 1 and move it to (300,900) in current scale units.
	260	OUTPUT	723;"VW ON;"	Display item 1.
	270	OUTPUT	723;"IT 2;OR 500,500;"	Address item 2 and move it to (500,500).
	280	OUTPUT	723;"VW ON;"	Display item 2.
	290	OUTPUT	723; "WAIT 2;"	Wait 2 seconds.

300 OUTPUT 723; "IT 1; DELETE;"

Delete item 1 from memory.

Description The IT command activates the reference-graphics mode by assigning a nonzero number to a series of graphics commands that form a shape. These shapes are called items. Use IT to blank, redraw, reshape, or reposition items. Graphics drawn when the reference-graphics mode is off cannot be modified at a later time. Execute IT 0 to turn the mode off. Manipulate an item by first activating it with IT, then modify it with the commands listed in the following table.

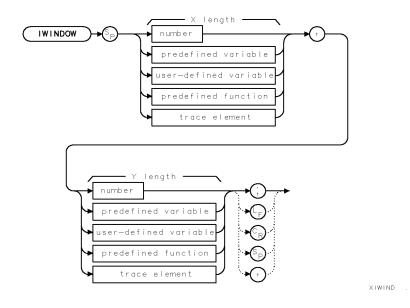
Commands that Modify Graphics Items

Command	Function	
VW OFF view item off	Blank item	
VW ON view item on	Redraw item	
OR origin	Offset item position	
TP pointer	Change item shape	
DELETE	Delete item from memory	

When assigned a non zero number, items are stored in memory for future display and manipulation. Execute CLRDSP to clear items from memory. (DISPOSE does not clear items from memory.) In addition to point-by-point drawing, items can be used to display text, grids, markers, or trace information. The commands associated with these tasks are divided into groups listed in the following table.

Commands Assignable to Items with the IT command.

Task	Description
Plot absolute, point-by-point drawing	PA, PD, PU
Plot-relative, point-by-point drawing	PR, PD, PU
Display trace data	GRAPH
Draw grid	GRID
Display text	TEXT, DSPLY
Display graphics marker	MK


A single item can be assigned to do only one task. For example, a single item cannot draw a box and display text. In this case, two items are required, one for the box and another for the text. Mixing item types generates a display error indicated by "E" in the display status box. For example, IT 1; PA 0,0,100,100; MK 100,100; generates an error in the display.

Query Response

See Also CLRDSP, OR, SCALE, VW, TP, DELETE, PA, PR, PD, PU, GRAPH, GRID, TEXT, DSPLY, MK

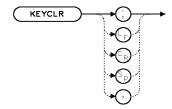
IWINDOW

Change size (but not scale) of displayed measurement results.

ltem	Description
X-Length Range	-32,768 - $32,767$, in units set by SCALE command.
Y-Length Range	—32,768 - 32,767, in units set by SCALE command.
Preset State	IWINDOW 1000,1000

Example

120 OUTPUT 723; "IWINDOW 700,800;"


Define instrument window to be a 700 X 800 dimension in current scale units. Notice annotation disappears when there is not enough room to display it.

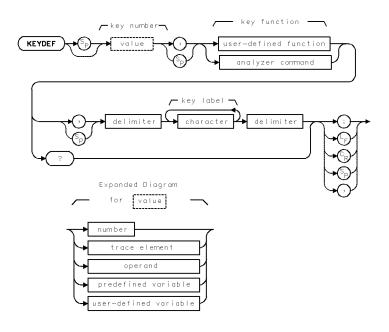
Description The IWINDOW command varies the size of the graticule and measurement results on the analyzer display. Size is specified in the current scale units (SCALE). The new graticule is called an instrument window.

See Also SCALE, CLRDSP, OP

KEYCLR

Clear keys currently accessed with (USER) key.

XKEYCL


Example 10 OUTPUT 723; "KEYCLR;"

 $Description \ \ \ The \ KEYCLR \ command \ blanks \ the \ \ \ \ \ \ \ menu.$

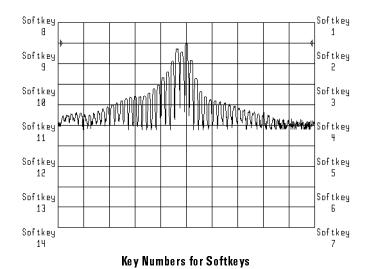
See Also KEYDEF, RCLU, READMENU, KEYPST

KEYDEF

Assign a label and user-defined function to a (USER) key.

ltem	Description
Key-Number Range softkeys	1 - 14
Key-Number Range keypad	15 - 29
Key-Label Range	2 lines of up to 7 characters each.

Example


- 10 OUTPUT 723; "FUNCDEF T_10, ~";
- $Create\ user\ defined\ function\ called\ T_10$
- 20 OUTPUT 723; "CENTERWL 1300NM; ";
- 30 OUTPUT 723; "SP 10NM"; "
- 40 OUTPUT 723; "KEYDEF 7, T_10, %TEST%;" Define key, labeled TEST.

Description The KEYDEF command creates a key that executes a user-defined function. The key can be a softkey that is located in the (USER) menu, or it can be a key that is located on an *undefined* custom keypad. The keys on the normal recognized keypad cannot be redefined. Once a key is defined, the user-defined function is executed whenever the key is pressed.

Error 2013

Error 2013 is displayed if a user-defined function is called in a KEYDEF before the function is defined and stored.

Up to 14 user-defined softkeys can be displayed at one time. They are all accessed with the (USER) key. The softkeys are numbered from 1 to 14. The following figure shows the correspondence between softkey number and softkey location. The softkey label can be up to 14 characters long, but if longer than 7, the characters are divided into 2 lines of up to 7 characters each. Additional characters can be incorporated into the label for control codes. For example, a line feed may be used to specify which character begins the second line of the label. Use the READMENU command as another way to build menus of keys. Use the PROTECT command to prevent inadvertent erasure or redefinition. KEYPST protects key #8 automatically. Use PROTECT to turn off the protection.

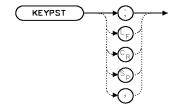
A key on the custom keypad can only be assigned to a user-defined function if the keypad is unrecognized by the display. If you attempt to redefine the keys of a recognized keypanel, the built-in definitions for the keypanel will still be used. There are 15 possible keypad keys labeled 15.through 29. The following figure shows the numbering of the keypad keys. There is no label annotation for USER keys 15 through 29. Labels may be defined, but they will never be displayed.

Assigned Key Numbers for Custom Keypad (As viewed from the front of keypad.)

15	18	21	24	27
16	19	22	25	28
17	20	23	26	29

Define all valid key presses

If you're building key definitions for a custom keypad, be sure to define all of the keypad positions which could be pressed by a key. For example, if a single key will be over both positions 15 and 18, both of these keypad positions should be defined to be the same function.


Query Response Sends the name of the user-defined function assigned to the key to the computer.

See Also KEYPST, PROTECT, READMENU, KEYCLR, SAVEU, RCLU

KEYPST

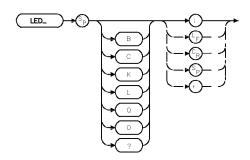
Preset (USER) keys to a default state.

XKEYPS

Example

10 OUTPUT 723; "KEYPST; ";

Reset user-defined keys to their preset values. Push [LOCAL] to view the [USER] keys.


Description The KEYPST command resets the menu of keys that is accessed with the (USER) key to contain these three keys only:

- DEFINE USR KEY Define user-defined key.
- SAVE USER Save menu of (USER) keys.
- RECALL USER Recall menu of (USER) keys.

Executing KEYPST protects key #8, DEFINE USR KEY, automatically. Use PROTECT to turn off the protection.

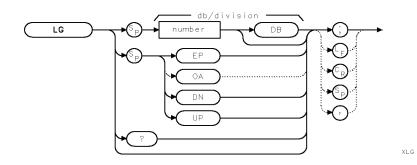
See Also KEYDEF, KEYCLR, PROTECT

${ m LED}_-$ Start the LED_ (light-emitting diode) laser characterization measurement DLP.

ckb16

Argu-	Definition
ment B	Turns on or off the view of the integration window trace.
С	Turn on or off the view of the distribution trace.
K	Select Gausian distribution.
L	Select Lorenzian distribution.
Q	Exit the measurement DLP.
O	Turn on or off calculations.
?	Queries the DLP and returns numerical equivilants of the parameters listed below:
	mean wavelength peak wavelength from -3 dB points peak wavelength sigma full width, half maximum width at -3dB points total power peak spectral density

Example	10	OUTPUT 723;"IP;";	Preset the instrument.
	20	OUTPUT 723;"LED_;";	$Start\ the\ LED_\ characterization\ measurement.$
	30	OUTPUT 723; "LED_ K; ";	$Select\ Gausian\ distribution\ for\ the\ measurement\ results.$
	40	OUTPUT 723;"LED Q;";	Exit the LED_ characterization measurement DLP.


Description The LED_ command automatically measures characteristics of a light-emitting diode laser source. Refer to "Measuring Signals," in the *Optical Spectrum Analyzer User's Guide* for additional information.

Query Response

See Also AMPMKR, WLMKRR, WLMKRL

LG Set the vertical logarithmic amplitude scale.

ltem	Description
Scale Range	0.01 dB - 20 dB
Step Increment	1,2,5,10 sequence
Preset State	LG 10DB

Example

40 OUTPUT 723;"LG 20DB;" 50 OUTPUT 723;"LG EP;" Set the log scale to 20 dB/division.

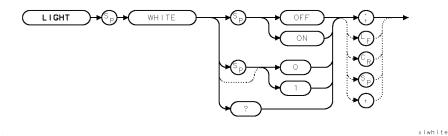
Change the log scale with the front-panel keys. Enter

a number, then press ACCEPT VALUE

Description The LG command specifies the vertical graticule divisions as logarithmic units without changing the reference level. This is called the logarithmic display mode. If no value is specified, the logarithmic scale is 10 dB per division.

Query Response

qgennum


See Also LN

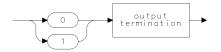
LIGHT

Turn internal white light source on or off.

NOTE

This command is valid only if Option 002, white light source, is installed.

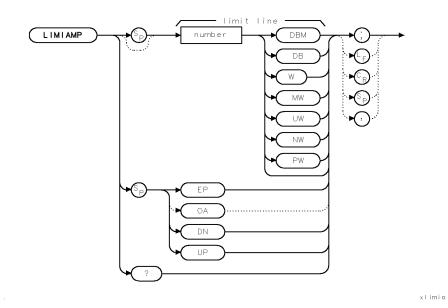
Example


10 OUTPUT 723; "LIGHT WHITE ON;"

Turns on white light source.

Description The LIGHT command turns on or off the internal white light source. The output is available on the front panel.

The query returns the current state, on or off.


Query Response

qgen0 .

LIMIAMP

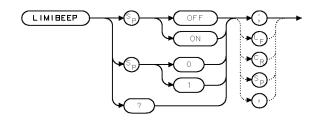
Set the limit-line segment amplitude.

Example

10 OUTPUT 723;"LIMIAMP -10DBM;"

Description The LIMIAMP command sets the amplitude of the currently active limit-line segment. The query sends the amplitude value of the current segment.

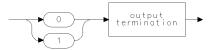
See Also LIMIBOT, LIMIDEL, LIMIDONE, LIMIEDIT, LIMIHALF, LIMILINE, LIMINEXT, LIMIRCL, LIMISCRL, LIMISDEL, LIMISEG, LIMISEL


Query Response

qgennum

LIMIBEEP

Sound a beep each time the currently measured trace data exceeds test limits.

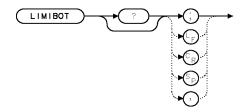


XLIMIB

ltem	Description
Preset State	LIMIBEEP OFF

Description The LIMIBEEP command sounds a beep when trace data exceeds limit line parameters during limit-line testing. See LIMILINE and LIMITEST for a description of limit lines and limit-line testing, and see LIMIFAIL for an alternative failure indicator. LIMIBEEP ON sounds a beep when a signal response fails the test limit as the sweep progresses. The beep is sounded once per sweep at the first failure point. LIMIBEEP OFF turns off the function.

Query Response

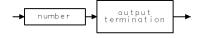


qgen0

See Also LIMIAMP, LIMIDEL, LIMIWL, LIMILINE, LIMIRCL, LIMIREL, LIMISDEL, LIMISEG, LIMITEST, LIMITYPE, and any commands that change trace data values.

LIMIBOT

Activate the last segment of the limit-line table.

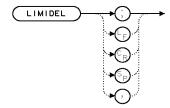

xlibot

Example

10 OUTPUT 723;"LIMIBOT;"

Description The LIMIBOT command specifies that the last segment of the limit line become the active segment. The query sends the number of the last segment. If there are 12 segments, the number returned is 12.

Query Response

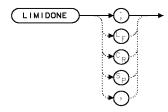


ggennum

See Also LIMIDEL, LIMIDONE, LIMIEDIT, LIMILINE, LIMIRCL, LIMISDEL, LIMISEG

LIMIDEL

Erase the contents of the limit-line table.

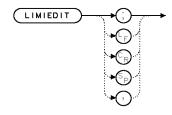

XLIDEL

Description When testing with limit-line parameters that reside in traces, execution of LIMIDEL is required before storing these limit-line parameters in the LIMIT_LO and LIMIT_HI trace arrays.

See Also LIMILINE, LIMITEST

LIMIDONE

Turn off the limit-line editor.

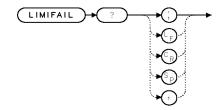

XLIDON

Example 10 OUTPUT 723; "LIMIDONE;"

Description The LIMIDONE command turns off the limit-line editor which removes the limit-line table and editing softkeys from the display.

LIMIEDIT

Turn on the limit-line editor.


XLIEDT

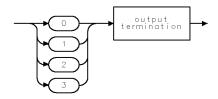
Example 10 OUTPUT 723; "LIMIEDIT;"

Description The LIMIEDIT command activates the limit-line editor.

LIMIFAIL

Query limit-line test results.

XL LEAL

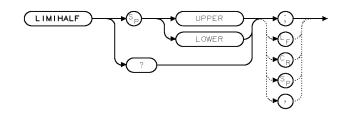

Example

10 OUTPUT 723; "LIMIFAIL?;"

Description Execute LIMITEST ON before executing LIMIFAIL. The LIMIFAIL command returns a number based on the condition of the sweep at the moment your query is sent. You may send the query at anytime during the sweep, there is no need to wait for the trace to complete. The following numbers indicate the condition for the returned value:

- "0" indicates data has been compared to limits and does not exceed the limit-line parameters.
- "1" indicates that the data fell below the lower limit line, prior to your execution of the query.
- "2" indicates that the data exceeded the upper limit line, prior to your execution of the query.
- "3" indicates that the data exceeded both the upper and lower limit lines, prior to your execution of the query.

Query Response


QLIFAL

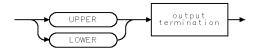
See Also LIMIAMP, LIMIBEEP, LIMIDEL, LIMIFREQ, LIMILINE, LIMIRCL, LIMIREL, LIMISDEL, LIMISEG, LIMITEST, LIMITYPE, and any commands affecting trace data.

XLIHLE

LIMIHALF

Select upper or lower limit line for modification or creation.

Description Item Preset State LIMIHALF UPPER

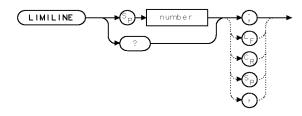

Example

OUTPUT 723;"LIMIHALF;"

Description The LIMIHALF command selects for modification either the upper or lower limit line in the limit-line table. The LIMIHALF command works in conjunction with the following commands to define a limit line stored in the limit-line table:

- 1. LIMILINE clears the limit-line table, prepares it for data entry, and specifies the number of segments in a limit line.
- 2. LIMISEG defines the amplitude and wavelength values of each of the limit-line segments.
- 3. LIMIREL determines whether the values of the limit line are absolute or are relative to the center-wavelength and reference-level settings.

Query Response



QLIHLF .

See Also LIMILINE

LIMILINE

Query the current limit-line parameters for future recall or build a new limit line

XLILIN

ltem	Description
Range	1 to 400 segments, depending on available memory.
	If only 1 segment is entered, the segment type "POINT" is used.

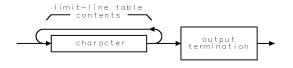
Example

10 OUTPUT 723; "LIMILINE 20;"

Description The LIMILINE command initiates the process that loads new limit lines into the limit-line table. When creating a limit line, following LIMILINE with a number clears the limit-line table, prepares it for data entry, and specifies the number of segments in the limit line. Thus, the expression LIMILINE 20 clears the limit-line table and allocates memory space for a 20-segment limit line.

> A limit line is a test limit consisting of a series of line segments positioned according to wavelength and amplitude in the spectrum-analyzer measurement range. Two limit lines can be defined, one for the upper limit, another for the lower limit. Once defined, trace data can be compared to the limit lines as the spectrum analyzer sweeps. When the trace data exceeds the upper or lower limits, the spectrum analyzer beeps or sends test results to the computer. Limit lines can be stored in a table or in a trace. Use these commands in the order given to build a limit-line for storing in the limit-line table.

- 1. LIMILINE clears the limit-line table, prepares it for data entry, and specifies the number of segments in a limit line.
- 2. LIMIHALF specifies whether the limit line is an upper or lower limit-line.
- 3. LIMISEG defines the amplitude and wavelength characteristics of each of the limit-line segments.
- 4. LIMIREL determines whether the values of the limit line are absolute values or positioned relative to the reference-level and center-wavelength settings.

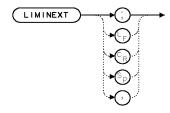

The contents of the limit-line table can be stored in a file with the LIMISAV or STOR command.

When the LIMILINE command is executed, the user-defined trace arrays, called LIMIT_LO and LIMIT_HI, are stored in internal memory. These arrays each contain a trace that reflects the contents of the limit-line table.

Execute LIMILINE? to send the contents of the limit-line table to a computer.

See Also LIMIBEEP, LIMIFAIL, LIMITEST

Query Response



qlilin

The query response is a character string consisting of LIMILINE, LIMIREL, LIMIHALF, and LIMISEG commands, which restore the limit-line table.

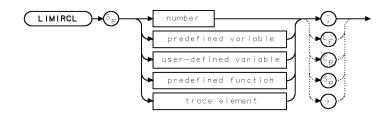
LIMINEXT

Activate the next limit-line segment.

XLINXT

Example

10 OUTPUT 723; "LIMINEXT;"


Description The LIMINEXT command moves the active position from the current limit line segment to the next limit line segment. If the segment prior to executing this command was the last segment, the first segment will become active.

See Also LIMIBOT, LIMIDEL, LIMIDONE, LIMIEDIT, LIMIHALF, LIMILINE, LIMINEXT, LIMIRCL, LIMISCRL, LIMISDEL, LIMISEG, LIMISEL

XLIRCL

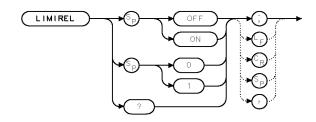
LIMIRCL

Recall stored limit line into limit-line table.

Description Item 0 - 9999 Range Requirements To select storage location | HP-IB device, HP-MSIB device, or internal memory, execute MSI before executing LIMIRCL. Internal memory is the storage device when power is applied to the spectrum analyzer.

Example

OUTPUT 723;"LIMIRCL 2;"


Description The LIMIRCL command recalls limit lines that have been stored previously by the LIMISAV command. LIMISAV specifies a limit-line file number. For example, LIMISAV 2 stores a limit line in file 2. Execute LIMIRCL 2 to recall the limit line.

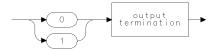
> When files are stored in user memory, limit-line entries appear in the user memory catalog as "LN" where N is the number of the register and "l" indicates the file contains limit lines. For example, the entry for LIMISAV 2 is listed in the catalog as "1_2" unless the PREFX command has been used to alter the "l" prefix. Press State, recall, catalog to view the catalog of user memory.

See Also LIMILINE, LIMITEST

LIMIREL

Determine whether limit line values are absolute or relative.

XL LREI

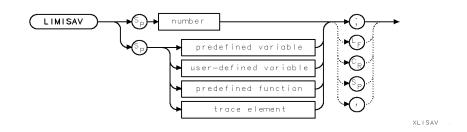

ltem	Description
Preset State	LIMIREL OFF

Example

OUTPUT 723; "LIMIREL;"

Description The LIMIREL command determines whether the wavelength and amplitude parameters in the limit-line table represent absolute values or relative values referenced to the reference-level and center wavelength settings. Executing LIMIREL OFF specifies limit-line table parameters as absolute values, and positions the limit line accordingly. Executing LIMIREL ON specifies limit-line table parameters as relative values, positioning the limit line relative to the reference-level and center-wavelength settings. The LIMIREL command does not affect limit-line testing with limit lines stored in trace arrays.

Query Response



qgen0

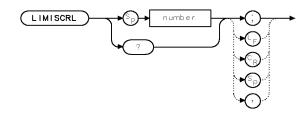
See Also LIMILINE, LIMITEST

LIMISAV

Save contents of limit-line table in limit-line file for future recall.

ltem	Description
Range	0 - 9999

Example

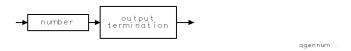

10 OUTPUT 723; "LIMISAV 2;"

Description The LIMISAV command saves in user memory the contents of the limit-line table only. LIMISAV does not save limit lines that are present in the LIMIT_HI or LIMIT_LO trace array. (LIMIT_HI and LIMIT_LO are described under the LIMITEST command.)

> LIMISAV specifies a register number. For example, LIMISAV 2 stores a limit line in register 2. Execute LIMIRCL 2 to recall the limit line. Files are saved in user memory unless specified otherwise by the MSI command. When stored in user memory, limit-lines entries appear in the user-memory catalog as "l_N", where N is the number of the register and "l" indicates the file contains limit lines. For example, the entry for LIMISAV 2 is listed in the catalog as "1_2". Press (State), recall, catalog & MSI to view the catalog of user memory. Use the PREFX command to change the letters of the "1" prefix.

LIMISCRL

Scroll the active limit-line segment from the current active segment.

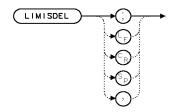


OUTPUT 723; "LIMISCRL 19;" Example

Description The LIMISCRL command scrolls the active limit-line segment from the current active segment. If there are a total of 15 segments and you enter the number 9 for segments to scroll, only 9 are scrolled.

> If the number entered is larger than the current number of segments, the count will wrap around to the first segment and continue counting from there. If the number is larger than the maximum number of segments, an error will be generated. For example, if there are 20 segments in your limit-line table, only the first 10 segments can be displayed on-screen. However, using the LIMISCRL command and entering in number 19 will allow you to view segments 10 through 20. By using LIMISCRL in this manner, it tends to have a "scrolling" affect on the table in which different portions of the limit-line table can be viewed.

Query Response The query response returns the number of the segment that is currently active.



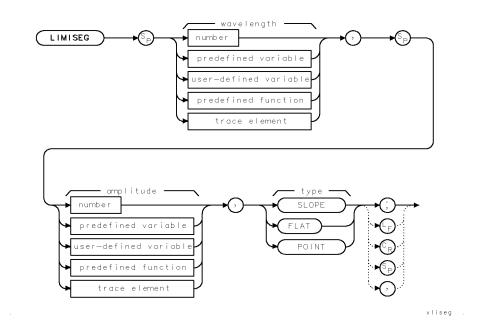
xlisrl

See Also LIMIBOT, LIMIDEL, LIMIDONE, LIMIEDIT, LIMIHALF, LIMILINE, LIMINEXT, LIMIRCL, LIMISCRL, LIMISDEL, LIMISEG, LIMISEL

LIMISDEL

Delete the currently active limit-line segment.

XLISDL


Example 10 OUTPUT 723; "LIMISDEL;"

Description The LIMISDEL command deletes the currently active limit-line segment.

See Also LIMIBOT, LIMIDEL, LIMIDONE, LIMIEDIT, LIMIHALF, LIMILINE, LIMINEXT, LIMIRCL, LIMISCRL, LIMISDEL, LIMISEG, LIMISEL

LIMISEG

Define slope and offset of limit-line segments.

ltem	Description	
Range	1 to 400 segments, depending on available memory.	
	If only 1 segment is entered, the segment type "POINT" is used.	

Example

10 OUTPUT 723; "LIMISEG;"

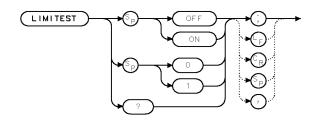
Description The LIMISEG command specifies the characteristics of a limit line that is stored in the limit-line table. When creating new limit lines, execute LIMILINE, and LIMIHALF if necessary, before executing LIMISEG.

> A limit line is divided into segments. LIMISEG defines the characteristics of each segment in terms of wavelength, amplitude, and, in most cases, slope. The amplitude and wavelength terms define the beginning point of the current segment; the type parameter defines the segment characteristics to the next point.

The segment type of the last segment of a limit line is not returned since the type parameter defines how the segments are drawn (connected) to the next segment. The last segment does not have a "next" segment. If there are 10 segments, the segment type for the first 9 is returned.

The three segment types are:

- FLAT draws a zero-slope line between the beginning points of two segments, producing limit-line values equal in amplitude for all wavelengths between the two points.
- SLOPE produces limit-line values of potentially varying amplitude for all wavelengths between the two points using linear interpolation.
- POINT specifies a limit value for the beginning point only.


If the segment type is omitted, the type of the previous segment is used. Limit-line segments can be added during limit-line testing. The LIMISEG command works in conjunction with the following commands to define a limit line in the limit-line table:

- 1. LIMILINE clears the limit-line table, prepares it for data entry, and specifies the number of segments in the limit line.
- 2. LIMIHALF specifies whether the limit-line is an upper or lower limit-line.
- 3. LIMIREL determines whether the values of the limit line are absolute or are relative to the center-wavelength and reference level settings.

See Also LIMIDEL, LIMIHALF, LIMILINE, LIMIRCL, LIMISDEL

LIMITEST

Compare active trace data to limit-line parameters.

XLITST

ltem	Description
Preset State	LIMITEST OFF

Example

10 OUTPUT 723; "LIMITEST ON;"

Description The LIMITEST command compares data in the currently sweeping trace to a limit line. A limit line must be stored in a table or trace before testing begins. (For a description of limit lines, refer to the LIMILINE command.) When in table form, the wavelength-amplitude characteristics reside in the limit-line table. To view the limit-line table, press Misc, MORE 1 of 3,

> **limit lines**. During measurements, the limit line characteristics are displayed graphically as a limit line when active-trace data is displayed. When in trace form, the wavelength-amplitude characteristics reside in either of two trace arrays, called LIMIT_HI and LIMIT_LO, which are stored in user memory.

Testing with Limit lines stored in traces can be used for limit line testing.

 $\label{limit-limit-limit} \textbf{Limit Line } \textbf{First, load a limit line into the limit-line table. Use LIMIRCL to load a } \\$ previously stored limit line or execute the following commands, in the order given, to create a limit line:

- 1. LIMILINE clears the limit-line table, prepares it for data entry, and specifies the number of segments in a limit line.
- 2. LIMIHALF specifies whether the limit line is an upper or lower limit-line.

- 3. LIMISEG defines the amplitude and wavelength characteristics of each of the limit-line segments.
- 4. LIMIREL determines whether the values of the limit line are absolute or are positioned relative to the reference-level and center wavelength settings.

Next, execute LIMITEST ON and sweep the measurement range. Executing LIMITEST ON automatically copies the contents of the limit-line table into the LIMIT_HI and LIMIT_LO trace arrays and compares active trace data to the line parameters.

When LIMIREL has been executed to make limit-line values relative. remember that changing the amplitude or wavelength range during limit-line testing will change the limit-line parameters. During single-sweep mode, LIMITEST ON compares the limit line to trace A data only. Executing LIMITEST OFF erases the LIMIT_HI and LIMIT_LO trace arrays.

Testing with First, use the LIMISAV command to store the contents of the limit-line table if Limit Lines needed for future use, then erase the contents of the limit-line table:

Stored in

40 OUTPUT 723; "LIMIDEL;"

 $Traces\ _{Next,\ use\ the\ TRDEF}$ command to define a trace array called LIMIT_HI or LIMIT_LO. Store upper limits in LIMIT_HI and lower limits in LIMIT_LO. Below, LIMIT_HI is defined to contain 800 wavelength amplitude pairs:

90 OUTPUT 723; "TRDEF LIMIT_HI,800;"

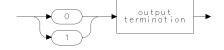
Next, store limit-line parameters in the trace array. Use the TRA, TRB, or TRC command to enter limit-line data point-by-point. If preferred, use swept trace data as a limit line.

In the example below, limit-line parameters for trace B are stored in LIMIT_HI. Note that the MOV command performs the transfer.

```
200 OUTPUT 723; "SNGLS; CLRW TRB; TS; MOV LI MIT HI, TRB;"
Store trace B data as a limit line called LIMIT_HI.
210 OUTPUT 723; "BLANK TRB;"
Turn trace B off.
```

Next, execute LIMITEST ON and sweep the measurement range.

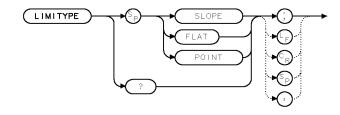
```
220 OUTPUT 723: "LIMITEST ON:"
Execute the limit test on trace A.
```


LIMITEST

Executing LIMITEST ON compares trace data to the line parameters stored in the LIMIT_HI and LIMIT_LO arrays. As before, during single-sweep mode, LIMITEST ON compares the limit line to trace A data only. Executing LIMITEST OFF erases the LIMIT_HI and LIMIT_LO trace arrays. Use the STOR command to save trace array contents in a file. Below, the LIMIT_HI trace array is stored as a trace file called "LIMIT."

500 OUTPUT 723; "STOR T, \$LIMIT\$, LIMIT_HI;"

Analyzer Test The limit-line test fails when trace-data amplitude is greater than the upper Results test limit or less than the lower test limit. Use LIMIFAIL or LIMIBEEP to signal test-limit failures. Use the marker and math commands to analyze trace data. For example, executing SUB TRB, TRB, LIMIT_HI stores the difference between the upper test limit and the trace B data. Execute MKPK HI; MKWL? of the signal that failed the test limit by the largest amount.


Query Response

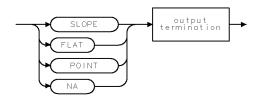
aaen0

LIMITYPE

Specify the type of limit-line segment.

xlityp

ltem	Description
Preset State	SLOPE

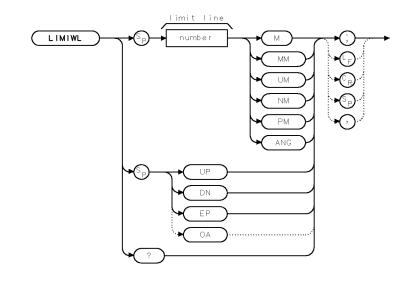

Example

OUTPUT 723; "LIMITYPE SLOPE;"

Description The LIMITYPE command specifies the type of the current limit-line segment to be either POINT, SLOPE, or FLAT. The query returns the current type or "NA" if not available.

- FLAT draws a zero-slope line between the beginning points of two segments, producing limit-line values equal in amplitude for all wavelengths between the two points.
- SLOPE produces limit-line values of potentially varying amplitude for all wavelengths between the two points using linear interpolation.
- POINT specifies a limit value for the beginning point only.

Query Response



QLITYP

See Also LIMIBOT, LIMIDEL, LIMIDONE, LIMIEDIT, LIMIHALF, LIMILINE, LIMINEXT, LIMIRCL, LIMISCRL, LIMISDEL, LIMISEG, LIMISEL

LIMIWL

Set the wavelength of the currently active limit-line segment.

ltem	Description
Range	dependent on hardware

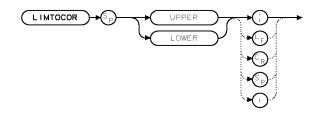
Example

10 OUTPUT 723; "LIMIWL 600NM;"

Description The LIMIWL command sets the wavelength of the currently active limit-line segment.

The query sends the wavelength of the current segment.

Query Response


qgennum

See Also LIMIBOT, LIMIDEL, LIMIDONE, LIMIEDIT, LIMIHALF, LIMILINE, LIMINEXT, LIMIRCL, LIMISCRL, LIMISDEL, LIMISEG, LIMISEL

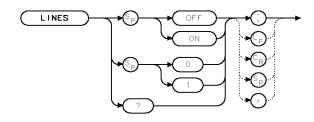
XLITOC

LIMTOCOR

Transfer limit-line data to amplitude-correction data.

ltem	Description
Preset State	UPPER

Example


10 OUTPUT 723; "LIMTOCOR UPPER;"

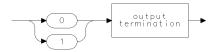
Description The LIMTOCOR command transfers limit-line data to amplitude-correction data. Points stored as limit-line segments, which can also be edited via the front panel, are converted to amplitude-correction points and used as if entered with the AMPCOR command. When used with CORTOLIM, the amplitude-correction points can be edited.

See Also AMPCOR, CORTOLIM

LINES

Connect lines between displayed trace points.

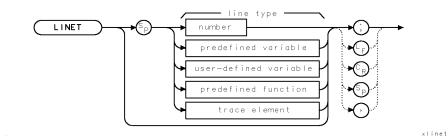
XLINES


ltem	Description
Preset State	ON

Example

10 OUTPUT 723; "LINES OFF;"

Description The LINES command connects or disconnects lines between the displayed trace points. When OFF is specified, displayed traces are shown as unconnected dots. The query sends the current state.


Query Response

qgen0 .

LINET

Draw dots or dashed lines.

ltem	Description
Line-Type Range	null, 0 - 8

Example

- 10 OUTPUT 723; "CLRDSP; BLANK TRA;"
- 20 OUTPUT 723; "PA 0,600;"
- 30 OUTPUT 723; "LINET 6;"
- 40 OUTPUT 723; "PD; PA 500, 600; "

Clear graphics from memory.

Place graphics pen at (0,600).

Activate dotted-line drawing.

 $Place\ pen\ down\ and\ draw\ line\ to\ (500,600).$

Description The LINET command selects the kind of line "drawn" on some displays (for example, HP 70205 or HP 70206) with the plot commands, such as PA and PR. LINET is not applicable to HP 70004 Displays. The line types are not used in plotter or printer outputs. Ten types of lines are available:

LINET plots a continuous line.

LINET O plots the end points only.

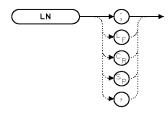
LINET 1 plots

LINET 2 plots _____

LINET 3 plots _____

LINET 4 plots _____. ___.

LINET 5 plots ______


LINET 6 plots ___ ___

LINET 7 plots __ __ __ __

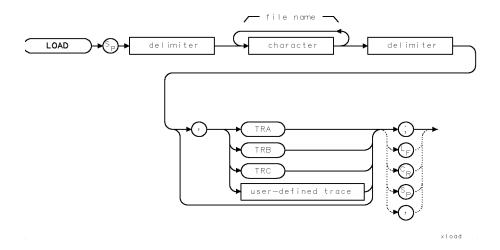
LINET 8 plots _ _ _ _ _ _ _

LN

Set vertical linear amplitude scale.

Example

10 OUTPUT 723; "LN;"


Description The LN command activates the linear display mode. It scales the vertical divisions of the graticule proportional to the input power. The bottom graticule line represents a signal level of 0 watts and the top is determined by the reference level. MEASURE SR makes LN inactive.

XLN

See Also MEASURE, LG

LOAD

Load article or file into internal memory.

ltem	Description
Range	1 - 10 characters
Delimiters	Required before and after <i>file name</i> when it contains a number or lower-case letters. When <i>file name</i> is upper-case alpha characters only, delimiters are optional.

Example

- OUTPUT 723; "CLRW TRB; TS; 110 Sweep trace B.
- OUTPUT 723; "STOR T, \$ALPHA\$, TRB;" 120
 - Store trace B in trace file called ALPHA.
- 130 OUTPUT 723; "LOAD \$ALPHA\$, TRC;" Load trace into trace C.

Description The LOAD command recalls to internal memory any ASCII file that consists of spectrum-analyzer commands. These include files stored by the following commands: SAVES (state register files), SAVET (trace files), LIMISAV (limit-line files), SAVEU (user-key files), SAVED (files containing traces, user-defined functions or variables, or on-end-of-sweep algorithms), STOR (any file).

> The operation of the LOAD command varies with the contents of the file recalled.

- Files containing trace data are loaded into the specified trace, or trace A if the destination is not specified. All instrument settings are changed to reproduce the state the spectrum analyzer was in when the trace was stored. In addition, the trace is placed in view mode.
- Files containing user-defined variables, functions, traces, or keys are loaded into user memory. Any duplicate user-defined articles over-write the existing versions.
- Files containing an on-end-of-sweep algorithm are loaded into user memory. The existing on-end-of-sweep algorithm, if present, is erased and replaced with the loaded algorithm.
- Files containing a limit line are loaded into the limit-line table.
- Loading state-register files reactivates the stored instrument state.
- Loading user-key files reactivates the stored (USER)-key menu.

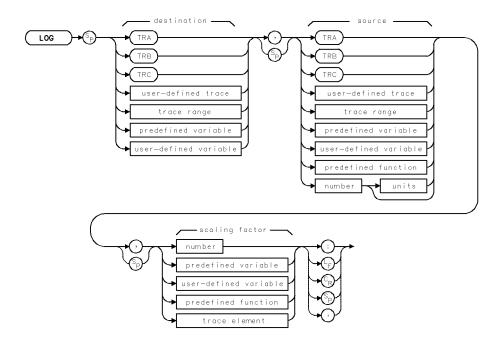
Always follow LOAD with the file name. The file name varies depending on the storing command used.

- When loading files stored by the STOR command, the file name is the same as that specified by STOR.
- When loading files stored by the SAVED, SAVES, SAVET, LIMISAV, or SAVEU command, the file name is a combination of the file prefix plus the file number.

For example, executing SAVEU 10 stores a file in user memory that is listed in the catalog as " u_10 ". The " $u_$ " is the prefix. The "10" is the file number. Together they comprise the file name. The following table shows the default file prefixes.

Cto	ndəi	·ΗI	مانا	Pro	fivac	for	Filee	Names

Article Stored	Storing Command	File Prefix
file containing user-key menu	SAVEU	u_
file containing trace	SAVET	t_
file containing user-defined variable, function, trace, or key	SAVED	d
file containing on-end-of-sweep algorithm	SAVED	d
file containing limit line	LIMIS AV	<u> </u>
file containing state register instrument settings and title-line	SAVES	S_


The PREFX command changes the file prefix for all files stored with SAVED, SAVES, SAVET, LIMISAV, and SAVEU. Thus, executing PREFX \$MARCH\$; SAVEU 10 stores a file called "uMARCH_10". Notice that the PREFX command inserts letters between the "u" and "_".

To verify file names, press <code>State</code>, <code>recall</code>, <code>catalog</code> & <code>MSI</code> to view the catalog of user memory, which is the currently selected storage device.

See Also MSI

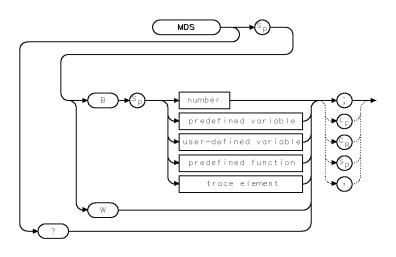
LOG

Take the logarithm, then multiply it by N.

ltem	Description
Source or Destination Amplitude Range	0 - 10,000 measurement units for linear trace data in <i>TRA, TRB, TRC,</i> or <i>user-defined trace</i> .
	$-32,768$ - $+32,767$ measurement units for logarithmic trace data in <i>TRA, TRB, TRC,</i> or user-defined trace. \pm 1.8 \times 10 ³⁰⁸ when using number, predefined variable, or user-defined variable.
Source-Length Range	1 - 2048 position units. Default is 800 position units when using <i>TRA</i> , <i>TRB</i> , <i>TRC</i> . Truncated if longer than destination length. If shorter than destination length, last element is extended for operation.
Destination-Length Range	1 - 2048 position units.

Example Calculate the decibel value of a power ratio using the LOG command.

20	CLEAR 723	Initialize analyzer.
30	OUTPUT 723;"IP;"	
40	OUTPUT 723;"VARDEF POWER,0;"	Define user-defined variable, called POWER,
		$equal\ to\ 0$
50	OUTPUT 723;"LOG POWER,5,10;"	$POWER = 10 \times LOG 5$
60	OUTPUT 723;"POWER?;"	Query value of power to computer.
70	ENTER 723; N	Assign value to computer variable.
80	DISP USING "D.DD.K":N:"dB"	Display value on computer.


Description The LOG command computes the logarithm $_{(base\ 10)}$ of the source, multiplies it by the scaling factor, then stores the result in the destination:

```
destination = (scaling \ factor)(LOG \ source)
```

When a trace is used, be sure it contains a complete sweep of measurement information.

MDS

Specify binary data as one byte (B) or two bytes (W). Also specify number of significant figures.

ltem	Description
Scaling-Factor Range	0 - 16
Preset State	MDS W

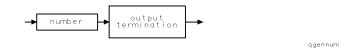
XMDS

Example Send trace data to computer as binary words (two 8-bit bytes).

5	CLEAR 723	Initialize analyzer.
7	OUTPUT 723;"IP;"	
10	INTEGER Z(1:800)	$Declare\ integer\ array.$
20	ASSIGN @Sa TO 723	Assign fast I/O path to 723.
30	ASSIGN @Sa_fast TO 723;FORMAT OFF	
40	OUTPUT @Sa;"MDS W;"	$Define\ word\ as\ data\ size.$
50	OUTPUT @Sa;"TDF B;"	Activate binary data format.
60	OUTPUT @Sa;"TRA?;"	Query amplitude of all trace elements
		in measurement units.
70	ENTER @Sa_fast USING "#,\";Z(*)	Terminate queried data. "W" specifies
		that items stored in Z(*) are words (two
		bytes).
80	PRINT Z(*)	

Description The MDS command determines if binary data is transmitted as one byte or one word (two 8-bit bytes). In addition, MDS specifies the number of significant digits contained in the binary data. Use MDS to improve speed and economize on storage space in memory. Better throughput (speed) is achieved with MDS B, at the sacrifice of resolution and thus accuracy. During normal operation, trace data is provided in decimal form. Use MDS when the TDF command specifies trace data as binary data. MDS also determines the format of data the spectrum analyzer receives from the computer. MDS B multiplies each byte of data received by 2 raised to the power of the scaling factor. MDS B divides each byte of data sent by 2 raised to the power of the scaling factor. In the example below, the number 16 is processed with a scaling factor of 3. (Number 16 represents the amplitude of a trace data point.)

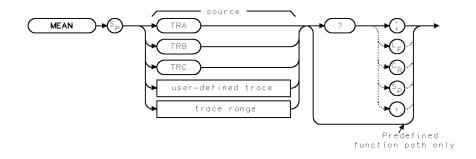
> Input Data $0001\ 0000 \times 2^3 = 1000\ 0000$


Output Data $0001\ 0000 \div 2^3 = 0000\ 0010$

A scaling factor of 8 provides adequate resolution for most measurement applications. When a scaling factor of 8 is used, trace data from 0 to 255 is sent as 0. Trace data from 256 to 511 is sent as 1 (0000 0001). Trace data from 512 to 767 is sent as 2 (0000 0010), and so on.

If the trace is in linear units, the range is 0 to 10,000. For linear mode, a scaling factor of 6 is more appropriate (returning values from 0 to 156 for trace data).

In standard 10 dB log mode, values range from -32,768 to +32,767. A scaling factor of 8 offers coverage of the full range (measurement units are hundredths of a dB). However, if it is known that the signal will not exceed ±156 dB, a scaling factor of 7 is more appropriate. The scaling factor of 7 preserves more resolution and accuracy. For a scaling factor of 7 in log mode. the minimum resolution is 1.28 dB. A scaling factor of 8 provides 2.56 dB resolution.


Query Response

See Also TDF, FETCH

MEAN

Calculate the mean value of the amplitudes in the source.

xmean

ltem	Description
Source-Length Range	3 - 2048 position units. Default is 800 position units when using <i>TRA</i> , <i>TRB</i> , <i>TRC</i> .
Source-Amplitude Range	O - 10,000 measurement units for linear trace data in <i>TRA</i> , <i>TRB</i> , <i>TRC</i> , or user-defined trace.
	-32,768 - +32,767 measurement units for logarithmic trace data in TRA, TRB, TRC, or user-defined trace.

Example

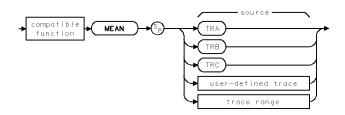
- 20 CLEAR 723
- 30 OUTPUT 723;"IP;"
- 40 OUTPUT 723; "SNGLS; "
- 50 OUTPUT 723; "CENTERWL 1300NM; SP 10NM;"
- 60 OUTPUT 723;"TS;"
- 70 OUTPUT 723; "MEAN TRA?;"
- 80 ENTER 723; N
- 90 DISP "MEAN OF TRACE IS "; N

Initialize analyzer.

Activate single-sweep mode.

Set measurement range.

Sweep trace A.


Query mean value of trace A.

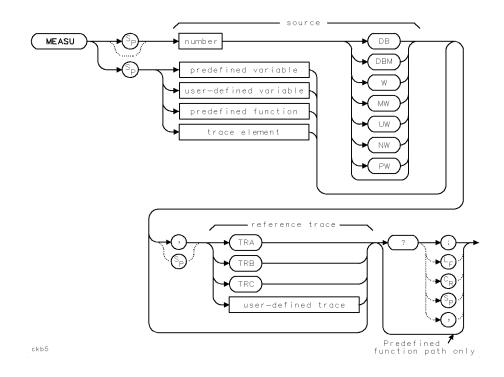
 $As sign\ value\ to\ computer\ variable.$

Display value on computer display.

Description The MEAN command calculates the mean value of the source. If a trace is used as the source, be sure it contains a complete sweep of measurement information. MEAN must be used as either a query or as a source in another analyzer-command function. Form a query by ending the MEAN statement with a question mark (?). When used as a query, MEAN sends the mean value of the source. Use MEAN as a source by incorporating the MEAN statement into the source of any spectrum-analyzer command having predefined function in its syntax diagram. When MEAN is used as a source, the mean value of the source is used for operation by the command that contains MEAN.

Predefined-Function Syntax

Query Syntax


Query Response

ggennum

MEASU

Convert parameter units of amplitude to measurement units.

ltem	Description
Source-Amplitude Range	0 - 10,000 measurement units for linear trace data in <i>TRA, TRB, TRC</i> , or <i>user-defined trace</i> .
	-32,768 - $+32,767$ measurement units for logarithmic trace data in TRA, TRB, TRC, or user-defined trace.
Reference-Trace Length Range	3 - 2048 position units. Default is 800 position units when using <i>TRA</i> , <i>TRB</i> , <i>TRC</i> .
Reference-Trace Amplitude Range	O – 10,000 measurement units for linear trace data in <i>TRA, TRB, TRC</i> , or <i>user-defined trace</i> .
	-32,768 - +32,767 measurement units for logarithmic trace data in <i>TRA, TRB, TRC</i> , or <i>user-defined trace</i> .

MEASU

Example Use the MEASU and POSU commands to position graphics on the analyzer display in measurement units and in position units.

10	CLEAR 723	$Initialize \ analyzer.$
20	OUTPUT 723; "IP;"	
30	OUTPUT 723; "CLRDSP;"	Clear graphics from memory.
40	OUTPUT 723; "SP 10NM; CENTERWL 1300NM; TS; "	Set measurement range.
50	OUTPUT 723; "SCALE 0,800,-11003,502;"	Set graphics scale for the display of traces.
60	OUTPUT 723; "PU; PA O, MEASU -37DBM, TRA;"	Place the pen on the left edge of the graticule
		at -37 dBm.
70	OUTPUT 723; "PD; PA POSU 1300NM, TRA, MEASU -22DBM, TRA;"	Draw line to the point at 1300 nm and -22
		dBm.
80	OUTPUT 723; "PU; PA O, MEASU -25DBM, TRA;"	Move pen to the left edge of the graticule, at
		-25 dBm.
90	OUTPUT 723; "PD; PA 800, MEASU -30DBM, TRA;"	Draw a line to the right edge of the graticule,
		$ending \ at \ -30 \ dBm.$

Description The MEASU command converts parameter-unit values to measurement-unit values. Measurement units describe trace amplitude information.

• For linear trace information, measurement units are defined as 0 (zero) for the bottom of the display, and 10,000 for the top of the display. A measurement unit equals the reference level/10,000:

$$measurement\ units = \frac{(value\ in\ reference\ level\ values)}{((reference\ level)(10,000))}$$

• For logarithmic trace information, the range of trace data is -32,768 measurement units to +32,767 measurement units. A measurement unit is one hundredth of a dBm:

$$measurement\ units = (value\ in\ dBm)(100)$$

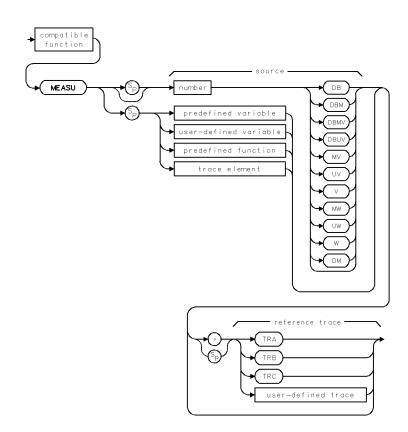
Parameter units are standard scientific units:

Parameter Units for Amplitude

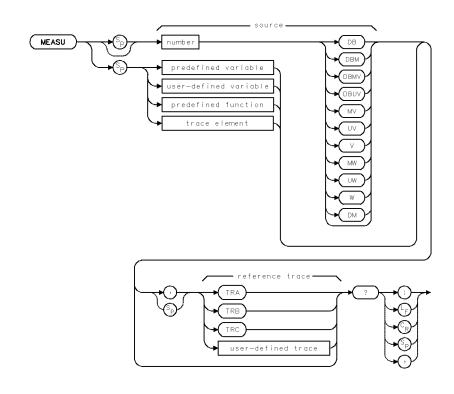
Decibels	Watts
	W
d Bm	mW
	nW
	pW

Use the MEASU command to preserve decimal values. All trace amplitude information is stored internally and manipulated in measurement units. This means a -10 dBm reference-level value is converted to -1000 measurement units before it is transferred to a trace element. (Recall that a measurement unit is one hundredth of a decibel.) This process is invisible to the user except in math and move functions when the source consists of a variable or real number, and the destination is a trace array or element. In this case, the source and destination express numbers in different units, making a conversion necessary. If the conversion is omitted, resulting data will be inaccurate by a factor of 100 and significant digits can be lost. If the reference trace is not specified, the last active trace is the reference trace. If the units are not specified, the AUNITS command determines the units.

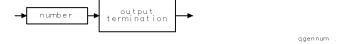
MEASU must be used as either a query or as a source in another analyzer-command function. Form a query by ending the MEASU statement with a question mark (?). When used as a query, MEASU sends the measurement-unit value of the source to the computer.


Use MEASU as a source by incorporating the MEASU statement into the source of any spectrum-analyzer command having *predefined function* in its syntax diagram. When MEASU is used as a source, the measurement-unit value of the source is used for operation by the command that contains MEASU.

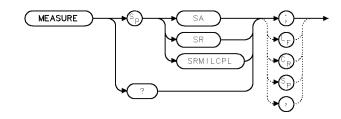
The following table lists commands that require the use of the MEASU command.


Commands that May Require Conversion using MEASU

Command	Definition
ABS	Compute absolute value.
ADD	Add sources, point by point.
AVG	Average source with destination, point by point.
BIT	Store value of bit.
CONCAT	Concatenate trace.
DIV	Divide sources, point by point, discard remainder.
EXP	Divide source by scaling factor and raise to power of 10.
INT	Compute integer value.
LOG	Compute logarithm.
MEAN	Compute mean value of data points.
MIN	Retain minimum value.
MOD	Divide sources, point by point, retain remainder.
MOV	Duplicate value s contained in source and place in destination.
MPY	Multiply sources, point by point.
MXM	Retain maximum value.
RMS	Compute root mean square of source, point by point.
SQR	Compute square root of source, point by point.
STDEV	Compute standard deviation.
SUB	Subtract sources, point by point.
SUM	Add sources, point by point.
SUMSQR	Add square of sources, point by point.
VARIANCE	Compute variance.
XCH	Exchange sources.


Predefined-Function Syntax

Query Syntax


Query Response

See Also ROFFSET, MEASURE, INZ, LN, LG, RL, AUNITS

MEASURE

Select spectrum-analysis or stimulus-response mode.

xmeasr

ltem	Description
Preset State	MEASURE SA

Example

120 OUTPUT 723; "MEASURE SA;"

Description The MEASURE command determines what kind of measurements the modular measurement system makes.

measurement system makes. Argument Definition SA Activates spectrum analysis, where all amplitude units are

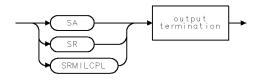
Activates spectrum analysis, where all amplitude units are specified in absolute values determined by:

- Amplitude units (AUNITS)
- Reference level (RL)
- Reference-level offset (ROFFSET)
- Logarithm scale (LG)
- Linear scale (LN)
- Amplitude correction (AMPCOR)

SR

Activates stimulus-response measurements where amplitude units are specified relative to a reference level of 0 dB when the A-minus-B or A-minus-C commands, AMB or AMC, are executed. During relative-amplitude mode, the following parameters are in dB:

- Trace data (TRA, TRB, TRC)
- Trace data conversions (AMPU and MEASU)

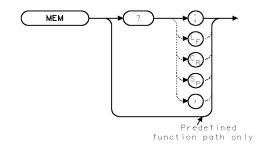

MEASURE

- Display line (DL)
- Threshold (TH)
- Marker amplitude (MKA)
- Reference level

SRMILCPL

This argument is identical to the SR argument except that system gains are allowed to change. For example, gain can change due to changes in the reference level.

Query Response

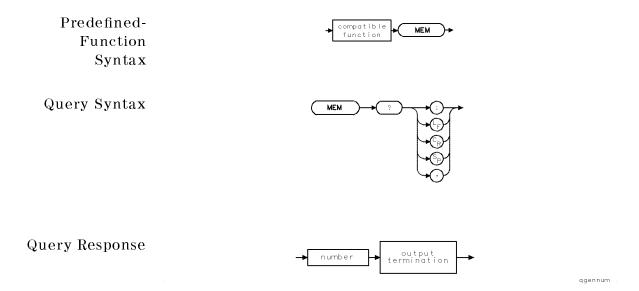

qme a s r

When the INSTMODE command is set to PD or SR, MEASURE SR is automatically activated.

See Also LN, AUNITS, RL, ROFFSET, AMPU, MEASU, DL, TH, MKA, MKREAD, MKRL

MEM

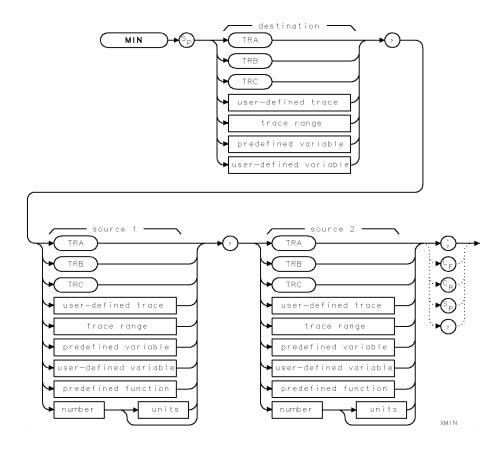
Return amount of available internal memory.



XMEM

Example Determine how many trace arrays can fit into available internal memory.

20	CLEAR 723	Initialize analyzer.
30	OUTPUT 723;"IP;"	$Define \ user-defined \ variable \ equal \ to \ 0.$
40	OUTPUT 723;"VARDEF TEMP,0;"	
50	OUTPUT 723;"DIV TEMP, MEM, 846;"	Divide the number of available user-memory bytes by 846 and store the results in TEMP. (A 400-point trace occupies 846 bytes.)
60	OUTPUT 723;"INT TEMP, TEMP;"	Store the integer value of TEMP in TEMP.
70	OUTPUT 723;"MEM?;"	Query the amount of available internal memory to the computer.
80	ENTER 723; N	Assign value to N .
90	OUTPUT 723;"TEMP?;"	Send the value of TEMP to computer.
100	ENTER 723; M	Assign value to M.

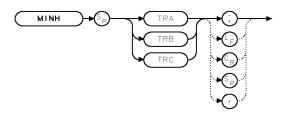

Description The MEM command computes the amount of unused internal memory. The amount of total internal memory available is dependent on the analyzer configuration and the local-oscillator firmware (ROM) version. MEM must be used as either a query or as a source in another analyzer command. Form a query by ending the MEM statement with a question mark (?). When used as a query, MEM sends the amount of unused memory to the computer. Use MEM as a source by incorporating the MEM statement into the source of any spectrum-analyzer command having predefined function in its syntax diagram. When MEM is used as a source, the value of unused memory is used for operation by the command that contains MEM.

See Also ACTDEF, AMPCOR, FUNCDEF, LIMILINE, LIMISAV, LOAD, NSTATE, ONEOS, PDA, PDF, RCLD, READMENU, REPEAT/UNTIL, SAVES, SAVET, SAVEU, STOR, TRDEF, USERERR, USERKEY, USERMSG, USTATE, VARDEF

MIN

Compare two values or traces, then store lesser value or trace.

ltem	Description
Source or Destination Amplitude Range	0 – 10,000 measurement units for linear trace data in <i>TRA, TRB, TRC, trace range</i> , or <i>user-defined trace</i> .
	—32,768 - +32,767 measurement units for logarithmic trace data in <i>TRA, TRB, TRC, trace range</i> , or <i>user-defined trace</i> .
	\pm 1.8 $ imes$ 10 308 when using <i>number</i> , <i>predefined variable</i> , or user-defined variable.
Source-Length Range	1 – 2048 position units. Default is 800 position units when using <i>TRA, TRB, TRC</i> . Truncated if longer than destination length. If shorter than destination length, last element is extended for operation.
Destination-Length Range	1 - 2048 position units.


Example Compare the marker amplitude to -20 dBm, then display the lower value on the analyzer display.

10	CLEAR 723	$Initialize \ analyzer.$
20	OUTPUT 723; "IP; "	
30	OUTPUT 723; "CLRDSP;"	${\it Clear\ graphics\ from\ memory}.$
40	OUTPUT 723; "SNGLS;"	$Activate\ single ext{-}sweep\ mode.$
50	OUTPUT 723; "VARDEF MINIMUM, 0;"	$Define\ user$ -defined $variable\ equal$
		$to \ \theta.$
60	OUTPUT 723; "TS; MKPK HI;"	SweeptraceA.Placeactivemarker
		at the highest signal level.
70	OUTPUT 723; "MIN MINIMUM, MKA, -20DBM;"	$Compare\ the\ marker\ amplitude\ to$
		-20 dBm. Store the smaller value
		in MINIMUM.
80	OUTPUT 723; "PU; PA 300, 700;"	Move $graphics\ pen\ to\ (300,700)$.
90	OUTPUT 723; "DSPLY MINIMUM, 6, 2;"	Display value of minimum.
100	OUTPUT 723; "TEXT \$dBm\$;"	$Write\ "dBm"\ next\ to\ the\ variable.$

Description The MIN command compares sources, point by point, sending the lesser values of each comparison to the destination. If one of the sources is a single value, it acts as a threshold, and all values equal to or less than the threshold pass to the destination. If traces are used as sources, be sure each contains a complete sweep of measurement information.

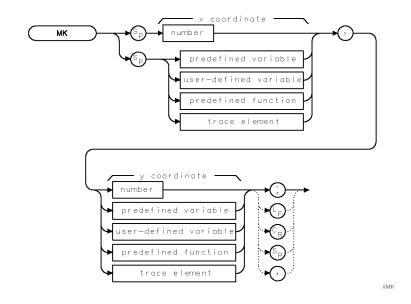
MINH

Compare amplitude of current trace data to previous sweep, then retain lesser values.

XMINH

Example

OUTPUT 723; "MINH TRA;"


Description The MINH command (like the minimum hold function) and compares the current amplitude value of each point on a trace as it sweeps to each point value detected during the previous sweep, then retains the minimum values. The trace is continuously swept, updated, and displayed.

> The optical spectrum analyzer system controls the detection mode. When MINH is activated, the current instrument detection mode (whether sample or peak) is displayed with the results. The minimum trace value is displayed with an S when sample detection mode is active, or a P when peak detection mode is active. This line of text appears in the bottom line at the center of the display.

See Also TRPST, TM, VTL, VTH

MK

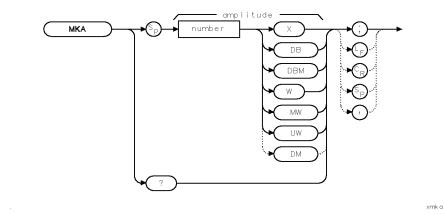
Position a marker anywhere on the display.

Item	Description
X-Coordinate Range	Depends on SCALE or DWINDOW command.
Y-Coordinate Range	Depends on SCALE or DWINDOW command.

Example

- 30 OUTPUT 723; "PD; MK 600,800; PU; "
- 40 OUTPUT 723; "IT 1; MK 700, 700;"

Place pen down. Position marker at (600,800). Lift pen.


Activate reference-graphics mode and assign MK to item 1. Position marker at (700, 700).

Description The MK command positions a marker anywhere on the analyzer display. Use the PD command to first place the pen down (except during reference-graphics mode.) Coordinates are specified in the current scale units, which are 0 to 1000 for the X and Y coordinates unless specified differently with the SCALE command or with the DWINDOW command if a window is active. Use the MK command in conjunction with the PU and PD commands when the reference-graphics mode is off. During the reference-graphics mode, the marker is drawn at the item origin, as in the preceding example.

See Also IT, SCALE, DWINDOW, CLRDSP

MKA

Query the amplitude of the current marker.

ltem	Description
Amplitude Range	± 300 dB

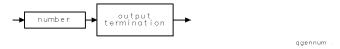
Example Query amplitude of signal at marker.

```
40 OUTPUT 723; "SNGLS;"
                              Activate single-sweep mode.
```

50 OUTPUT 723; "TS; " Sweep trace A.

60 OUTPUT 723; "MKN;" Display a marker at the center of the trace.

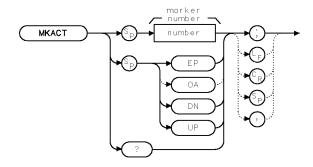
70 OUTPUT 723; "MKA?;" Send marker amplitude to computer.


Description In marker normal mode, the MKA? query places the marker at the center wavelength (CENTERWL) specified. If an active marker is not displayed when you send this command, the marker is placed at the specified amplitude. If more than one trace is displayed, MKA marks the currently active trace. If more than one trace is active, MKA marks the traces in the sequence order of A, B, then C, unless the MKTRACE command specifies otherwise.

> When the vertical scale is in logarithmic mode, the amplitude units are in dBm; in linear mode, the amplitude units are in watts (W, MW, or μ W).

When relative-marker mode is activated with the MKAL or MKAR command, the MKA command specifies the amplitude difference from the reference marker.

When the vertical scale is in logarithmic mode, the amplitude units are in dBm; in linear mode, the amplitude units are in ratio, as indicated with the X in the syntax diagram.


Query Response The MKA query gives the amplitude of the active marker. As a predefined variable (such as in a math operation), MKA represents the active-marker amplitude.

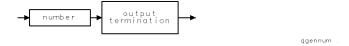
See Also MKTRACE, MKOFF, MKREAD and commands that affect amplitude, such as AMPCOR, MEASURE, RL, ROFFSET, INZ

MKACT

Select active marker.

xmk a c t

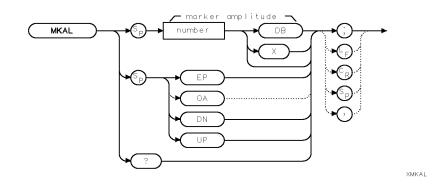
ltem	Description
Marker-Number Range	Integers, 1 - 5
Step Increment	1
Preset State	MKACT O


Example

OUTPUT 723; "MKACT 5;"

Define marker #5 as the active marker.

Description The MKACT command selects one of five markers as the active marker. All five markers can be displayed simultaneously, but only one can be active at a time. The active marker is highlighted and its number and position are notated at the upper right corner of the graticule. If no markers are displayed, MKACT places the active marker at the center of the trace. Instrument preset (IP) turns off the markers. Marker #1 is the active marker unless specified differently by the MKACT command.


Query Response If markers are off, MKACT sends a 0 to the computer.

See Also MKAL, MKN, MKAR, MKD, MKOFF

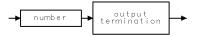
MKAL

MKAL activates marker #2 and positions it on a trace relative to the amplitude of marker #1.

ltem	Description
Marker-Amplitude Range	± 300 dBm
Step Increment	1 major scale division
Preset State	MKAL O

Example

- OUTPUT 723; "CENTERWL 1000NM; SP 500NM; TS;" 40 Set measurement range. Sweep the analyzer.
- OUTPUT 723; "MKPK HI;"
- Set marker at highest signal peak.
- OUTPUT 723; "MKAL -60DB;"

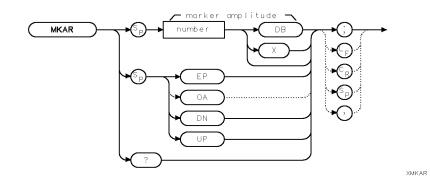

Set amplitude-left marker 60 dB below reference marker.

Description The MKAR command makes marker #1 a reference marker and marker #3 an active amplitude-left marker. The MKAR command also activates the relative-marker mode, which displays two markers and calculates the wavelength and amplitude difference between them. When this mode is active, the MKA and MKAR commands specify the amplitude difference between the amplitude-right and reference markers. If the vertical scale of the display is logarithmic, the difference between the markers is in decibel units. If the vertical scale is linear, the difference between the markers is a power ratio. In the syntax diagrams, X represents the ratio of the marker amplitudes.

Use MKAR with the MKAL and MKBW or MKBWA commands to simplify bandwidth measurements.

If marker #1 is not displayed, MKAR positions it at the center of the trace. If more than one trace is displayed, MKAR positions marker #1 on the active trace or on trace A, B, or C, in that order; or marks the trace specified by MKTRACE. Update trace data after executing MKAR.

Query Response



qgennum

See Also MKAR, MKBW, MKBWA, MKREAD, MKOFF, MKPX and commands affecting amplitude such as MEASURE, AMPCOR, ROFFSET

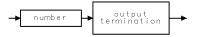
MKAR

MKAR activates marker #3 and positions it on a trace relative to the amplitude of marker #1.

ltem	Description
Marker-Amplitude Range	± 300 dBm
Step Increment	1 major scale division
Preset State	MKAR O

Example

- OUTPUT 723; "CENTERWL 1000NM; SP 500NM; TS;" 40 Set measurement range. Sweep the analyzer.
- OUTPUT 723; "MKPK HI;"
- OUTPUT 723; "MKAR -3DB;"

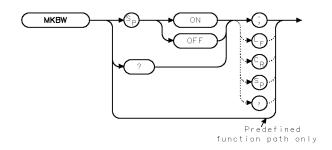

Set marker at highest signal peak. Set amplitude-right marker 3 dB below reference marker.

Description The MKAR command makes marker #1 a reference marker and marker #3 an active amplitude-right marker. The MKAR command also activates the relative-marker mode, which displays two markers and calculates the wavelength and amplitude difference between them. When this mode is active, the MKA and MKAR commands specify the amplitude difference between the amplitude-right and reference markers. If the vertical scale of the display is logarithmic, the difference between the markers is in decibel units. If the vertical scale is linear, the difference between the markers is a power ratio. In the syntax diagrams, X represents the ratio of the marker amplitudes.

Use MKAR with the MKAL and MKBW or MKBWA commands to simplify bandwidth measurements.

If marker #1 is not displayed, MKAR positions it at the center of the trace. If more than one trace is displayed, MKAR positions marker #1 on the active trace or on trace A, B, or C, in that order; or marks the trace specified by MKTRACE. Update trace data after executing MKAR.

Query Response



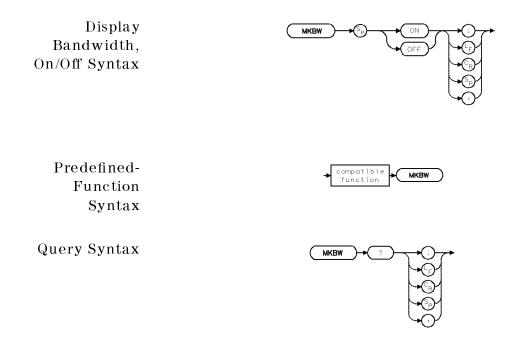
qgennum

See Also MKAL, MKBW, MKBWA, MKREAD, MKOFF, MKPX and commands affecting amplitude such as MEASURE, AMPCOR, ROFFSET

MKBW

Display wavelength difference between #2 and #3 markers.

XMKBW


ltem	Description
Preset State	MKBW OFF

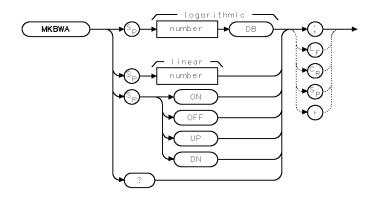
Example

50	OUTPUT 72	23;"MKPK HI;"	Set marker at highest signal peak.
60	OUTPUT 72	23;"MKAL -60DB;"	Set amplitude-left marker 60 dB below
			reference marker.
70	OUTPUT 72	23;"MKAR -60DB;"	Set amplitude-right marker 60 dB below
			reference marker.
80	OUTPUT 72	23;"MKBW ON;"	$Display\ wavelength\ difference\ between\ amplitude-$
			left and amplitude-right markers.
90	OUTPUT 72	23;"MKBW?;"	Query wavelength difference.

Description The MKBW command displays the wavelength difference between markers #2 and #3, even if the markers are not displayed. MKBW? sends the bandwidth value to the computer. MKBW ON displays the bandwidth in the message area. MKBW OFF blanks the message.

> MKBW can be used as a source of another command. Use MKBW as a source by incorporating the MKBW statement into the source of any spectrum analyzer command having predefined function in its syntax diagram. When used as a source, MKBW uses the wavelength difference for operation by the command that contains MKBW.

Query Response A zero is returned after MKBW OFF is executed.



qgennum

See Also MKAL, MKAR, MKBWA

MKBWA

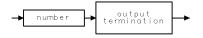
Display wavelength difference X dB below marker peak.

XMKBWA

ltem	Description
Preset State	MKBWA 3DB
Linear Mode	Use bypass path; do not send number as dB units
LOG Mode	Use dB path; include dB with the number.

Example

- 10 OUTPUT 723; "MKBWA -6DB;"
- 20 OUTPUT 723; "MKBWA ON;"
- 30 OUTPUT 723; "MKBW?;"

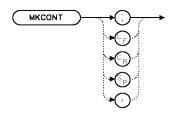

Set amplitude markers 6 dB below marker peak.

Display wavelength difference between markers. Query wavelength difference.

Description The MKBWA command displays a signal's bandwidth at a user-specified amplitude below the signal's peak. Two markers are automatically placed at the amplitude offset you specify, and then the wavelength difference between the markers is calculated and displayed. First, use the command to specify the amplitude to perform the bandwidth measurement. Then, turn MKBWA on to view the bandwidth.

MKBWA

Query Response



qgennum .

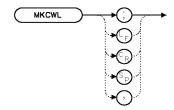
See Also MKBW

MKCONT

Enable the sweep to continue past the marker.

XMKCON

Example


10 OUTPUT 723; "MKCONT;"

Description The MKCONT command enables the sweep to continue past the marker by turning off the MKSTOP command. Use the MKCONT command to reestablish normal sweeps after the MKSTOP command is used. MKSTOP stops the sweep from continuing past any displayed marker.

See Also MKSTOP

MKCWL

Set center wavelength equal to wavelength at marker.

XMKCWL

Example

40 OUTPUT 723; "TS;"

50 OUTPUT 723; "MKN EP;"

60 OUTPUT 723; "MKCWL; "

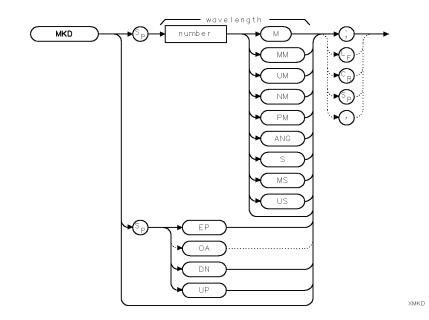
70 OUTPUT 723; "TS;"

Sweep measurement range.

Move the marker using the keypad, step

keys, or knob. Press ACCEPT VALUE.

Move marker to center wavelength.


Sweep.

Description The MKCWL command centers the active marker and the trace point it marks by setting the center wavelength equal to the marker wavelength. If the active marker is a relative type that has been Activated by the MKD, MKAL, or MKAR commands, an error condition occurs. If no marker is displayed, MKCWL positions a marker at the center of the trace. If more than one trace is displayed, MKCWL positions it on the active trace or on trace A, B, or C, in that order; or marks the trace specified by MKTRACE. Update the trace data after executing MKCWL.

See Also MKTRACE, MKOFF

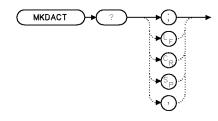
MKD

Position marker relative to reference marker, according to wavelength.

ltem	Description
Wavelength Range	\pm 600 nm to 1700 nm
Step Increment	1 major horizontal scale division

Example Use markers to find the two highest signal levels displayed.

40	OUTPUT	723; "SNGLS; "	$Activate\ single ext{-}sweep\ mode.$
50	OUTPUT	723; "STARTWL 600NM; STOPWL 85	ONM; " Set measurement range.
60	OUTPUT	723;"TS;"	$Sweep\ trace\ A.$
70	OUTPUT	723;"MKPK HI;"	Place marker on highest signal peak.
80	OUTPUT	723;"MKD;"	Activate the delta marker mode Since no value was specified with MKD, it places the delta marker at the position of the first marker. The delta marker is now active and under your control.
90	OUTPUT	723;"MKPK NH;"	Move the delta marker to the next highest signal level.

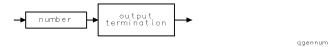

Description MKD positions a second marker on a trace relative to the position of the active marker, called the reference marker. Once positioned, the new marker becomes the active marker and is called a delta marker. The delta marker is positioned in terms of wavelength, or time if the analyzer is in zero span mode. Thus, MKD O places a delta marker at the same wavelength as on the reference marker. MKD 10xxx places a delta marker at a wavelength 10 xx higher than the reference marker. If no marker is active, MKD places two markers at the center of the active trace. If more than one trace is active, MKD places the marker on trace A, B, or C, in that order; or on the trace specified by the MKTRACE command.

> The MKD command also activates the relative-marker mode, which displays two markers and calculates the wavelength and amplitude difference between them. When this mode is active, both the MKWL and MKD commands specify the wavelength difference between the delta and reference markers.

See Also SP, MKTRACE

MKDACT?

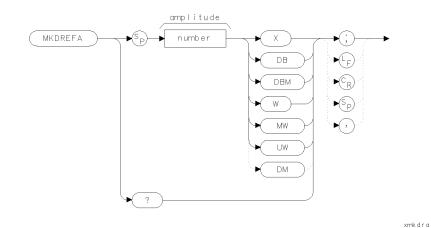
Report which marker is the currently active delta marker.


xmk a c t

Example

OUTPUT 723; "MKDACT?;"

Description The MKDACT? command reports the marker number of the currently active delta marker. The marker numbering is the same as for MKACT. If no delta marker is currently active, a value of 0 is returned.


Query Response

See Also MKACT

MKDREFA

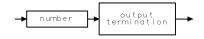
Sets a reference marker for a delta marker at a specific amplitude. Marker position is not restricted to a trace point.

ltem	Description
Range	±300 dB

Example

110

100 OUTPUT 723; "MKDREFA -23.5DB;" OUTPUT 723; "MKDREFF 1300NM;"

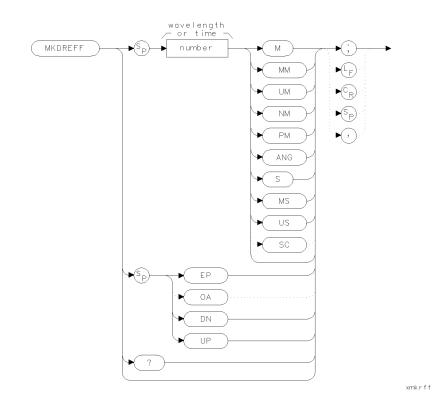

Set the marker's vertical position. Set the marker's horizontal position.

Description The MKDREFA command, in conjuction with the MKDREFF command, positions the general reference marker anywhere on the display. (Normal active markers must reside upon a trace point, you can set only the marker's wavelength or amplitude, but not both. Refer to MKN, MKAL or MKAR.)

> When the vertical scale is in logarithmic mode, the amplitude units are in dBm; in linear mode, the amplitude units are in watts (W, MW, or μ W).

When relative-marker mode is activated with the MKAL or MKAR command. the MKDREFA command specifies the amplitude difference from the reference marker. When the vertical scale is in logarithmic mode, the amplitude units are in dBm; in linear mode, the amplitude units are in ratio, as indicated with the X in the syntax diagram.

Query Response



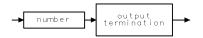
qgennum

See Also MKDREFF, MKA, MKWL

MKDREFF

Set the reference marker for a delta marker to a specific wavelength (or time in zero span). Marker position is not restricted to a trace point.

ltem	Description
Range	600 nm to 1700 nm

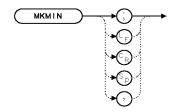

MKDREFF

OUTPUT 723; "MKDREFA -23.5DB;" Set the marker's vertical position. Example 110 OUTPUT 723; "MKDREFF 1300NM;" Set the marker's horizontal position.

Description The MKDREFF command, in conjuction with the MKDREFA command. positions the general reference marker anywhere on the display. This is in contrast to normal active markers which must reside upon a trace point. The MKDREFA command must be issued before the MKDREFF command. If the active marker is not displayed, MKDREFF places it at the specified wavelength. If the position of the marker is not specified, MKDREFF places it at center screen.

> For wavelength spans greater than zero, the MKDREFF command returns the wavelength of the active marker, or the wavelength difference between the reference and delta marker when the relative-marker mode has been activated by the MKD command. For wavelength spans equal to zero. MKDREFF returns the marker position in terms of time. As a predefined variable, MKDREFF represents either the wavelength or time position of the active marker and can be very useful during math operations and data analysis. The marker readout and returned information varies depending on span and marker-readout setting selected by the MKREAD command.

Query Response



agennum

See Also MKDREFA, MKWL, MKA

MKMIN

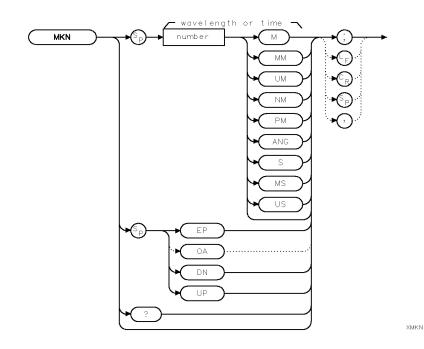
Move displayed marker to lowest signal level in trace.

XMKMIN

Example

60 OUTPUT 723; "MKMIN; "

 $Find\ lowest\ signal\ level.$


Description The MKMIN command moves the active marker to the minimum value detected. MKMIN operates on the displayed, active trace, or if more than one is displayed, it operates on trace A, B, or C, in that order; or on the trace

specified by MKTRACE.

See Also MKPX, SMOOTH, VAVG, VB, RB, MKTRACE

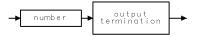
MKN

Position active marker on trace according to wavelength.

ltem	Description
Wavelength Range	600 nm—1700 nm

Example

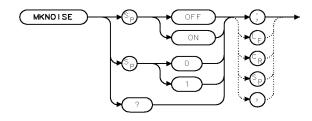
OUTPUT 723; "MKN 800NM;"


Set marker at 800 nanometers.

Description The MKN command places the active marker on a trace at the specified wavelength or, during zero span mode, at the specified time. If the position of the marker is not specified, MKN places it at the center of the trace.

> MKN also activates the normal marker mode, where the wavelength and amplitude of the active, displayed marker is annotated in the upper-right corner of the graticule. MKN turns off all other marker functions that display marker information in other forms, including the following functions: MKBW, MKAL, MKAR, MKD, MKNOISE, and MKPAUSE.

If more than one trace is displayed, MKN marks the active trace, or marks trace A, B, or C, in that order; or marks the trace specified by MKTRACE. When MKN is turned OFF, the marker is turned off.



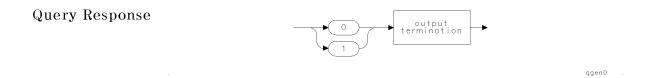
qgennum

See Also SP, MKREAD, MKACT, MKTRACE

MKNOISE

Display or query noise bandwidth at marker.

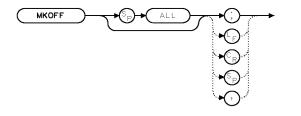
XMKNOS


ltem	Description
Preset State	MKNOISE OFF

Example Calculate the spontaneous emission power spectral density at the marker position.

10	CLEAR 723	Initialize analyzer.
20	OUTPUT 723;"IP;"	
30	OUTPUT 723;"MKN EP;"	Display the active marker and position it
		in the noise using the front-panel controls.
		Press ACCEPT VALUE.
40	OUTPUT 723;"MKNOISE ON;"	Display the rms noise level at the marker.
50	OUTPUT 723;"MKA?;"	Query the noise level to the computer.
60	ENTER 723; N	$As sign\ value\ to\ computer\ variable.$

Description The MKNOISE command computes the spontaneous emission power spectral density at the displayed, active marker.


The command averages the trace buckets with 16 of the active markers and normalizes the measured power to 1 nm resolution bandwidth. If no marker is displayed, MKNOISE places the active marker at the center of the active trace. If more than one trace is active, MKNOISE operates on trace A, B, or C, in that order; or on the trace specified by MKTRACE.

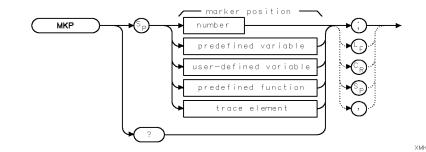
See Also RB, VB, SMOOTH, VAVG, MKTRACE and commands that affect amplitude, such as AMPCOR, RL, MEASURE

MKOFF

Turn off markers.

XMKOFF

Example


50 OUTPUT 723; "MKOFF;"

Turn off all markers.

Description Use the MKOFF command to turn off the active marker, or all markers. MKOFF erases the active marker. MKOFF ALL erases all markers.

MKP

Position the active marker on a horizontal trace in position units.

ltem	Description
Range	1 - 2048

Example Query the position of a marker in position units.

20 OUTPUT 723;"MKP 1;"

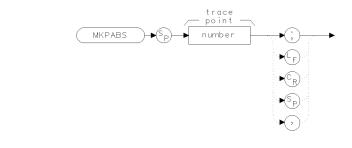
Position marker at first trace point.

Description The MKP command positions the active marker on a trace horizontally in position units.

Position units describe the position of a point along the horizontal axis of a trace. The point at the left end of the trace has a position-unit value of 1. The point at the right end of a 800-point trace has a position-unit value of 800. If more than one trace is displayed, MKP chooses the active trace, or chooses trace A, B, or C, in that order; or chooses the trace specified by MKTRACE.

Query Response Returns the delta value when delta marker mode is on.

qgennum


Language Reference **MKP**

See Also MKTRACE

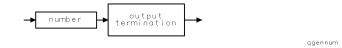
xmk p b s

MKPABS

Sets the current active marker to the bucket requested even in delta marker mode.

ltem	Description	
Range	O to 2047	

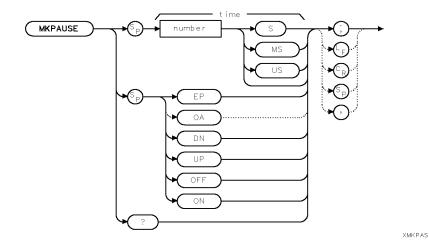
Example


100 OUTPUT 723; "MKPABS 431;"

Description The MKPABS command sets a marker to an absolute bucket. If the value is larger than the current trace length, the marker will be placed on the last trace point. For example, if the trace length was 800, and the value sent was 2000, no error would occur, but the marker would appear on bucket number 799, not number 2000.

> If the value is set to a bucket number that is beyond what the optical spectrum analyzer is capable of displaying (not what it is currently displaying) a "Parameter out of range" error occurs.

The query returns the absolute wavelength. Use the MKD command to set a marker relative to the reference marker.


Query Response

See Also MKFABS

MKPAUSE

Pause the sweep at the displayed active marker for the specified length of time.

ltem	Description	
Time Range	0 - 1000 seconds	
Step Increment	1, 3, 10 sequence	
Preset State	MKPAUSE O off	

Example

30 OUTPUT 723; "TS; " Sweep trace A.

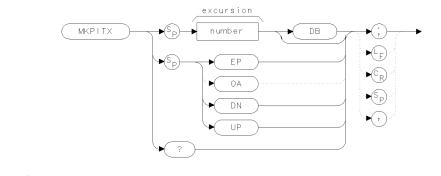
O OUTPUT 723; "MKN;" Display active marker.

50 OUTPUT 723; "MKPAUSE 1.3S;" Pause sweep for 1.3 seconds at marker.

Description The MKPAUSE command pauses the sweep at the displayed active marker for the specified length of time.

The delay can be removed by executing MKPAUSE 0 or by turning off the active marker with the MKOFF command. If no marker is displayed, MKPAUSE first marks the highest level of the active trace, or marks trace A, B, or C, in that order; or marks the trace specified by MKTRACE.

Query Response


qgennum

See Also MKOFF

xmkpit

MKPITX

Control the excursion value for marker pit operations.

Item Description Pit-Excursion Range 0.01 - 300 dB Step Increment 1 scale division during log mode. 1 scale division at top graticule line |.915 dB| during linear mode. Preset State MKPITX 3DB

Example

OUTPUT 726; "MKPITX 6DB;"

Set the pit excursion value to 6dB

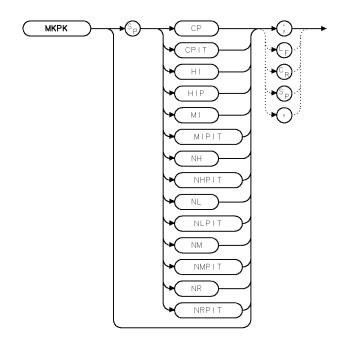
Description Just as MKPX sets the peak excursion value for marker peak operations, MKPITX sets the pit excursion value for marker pit operations. The MKPITX command specifies the minimum signal excursion for the marker-pit functions (MKPK). Signal movement less than the pit-excursion value is not considered a pit. To be a pit, the skirt of the signal response must dip by at least the pit-excursion value, and then rise by at least the pit-excursion value.

> The default pit-excursion value is 3 dB for pits displayed on a logarithmic scale. This means that any pit with an excursion of less than 3 dB on either side of its bandwidth shape is not identified as a pit. If the marker-pit command, MKPK MIPIT, is executed on such a pit, the optical spectrum analyzer does not place a marker at the pit. For signals displayed on a linear scale, the default pit excursion equals

$$excursion = 1 - 10^{\frac{-MKPITX}{200}}$$

MKPITX

Note that if the pit excursion is too small, noise pits are identified as pits. Use VAVG or SMOOTH to minimize noise pits so that signal peaks can be distinguished from noise pits.


Query Response

See Also MKPK, MKPX

MKPK

Position active marker at a peak (or pit) on the trace.

Example

- 30 OUTPUT 723; "SNGLS;"
- 40 OUTPUT 723; "STARTWL 600NM; STOPWL 1700NM;"
- 50 OUTPUT 723;"TS;"
- 60 OUTPUT 723; "MKPK HI;"
- 70 OUTPUT 723; "MKD; MKPK NH; "
- 80 OUTPUT 723; "MKPK NR;"

Activate single-sweep mode. Set measurement range.

xmkpk

Sweep the measurement range. Move the active marker to the

Move the active marker to the highest signal level (amplitude) on the trace.

Move the delta marker to the next highest signal level on the trace.

Move the marker to the next signal peak of higher wavelength.

Description The MKPK command parameters reposition the active marker on the trace as follows:

Argument Definition

CP Moves the displayed, active marker to the closest peak.

CPIT Select the closest pit.

ΗI Moves the active marker to the highest point on the trace.

HIP Move the displayed, active marker to the highest peak (as

opposed to the highest point).

ΜI Select the minimum peak (this is NOT the same as the minimum

point, which is selected by MKMIN).

MIPIT Select the lowest pit. A pit is an inverse peak: it consists of a

local minimum point with a positive excursion on each side.

NHMoves the displayed, active marker to the next highest signal

level detected.

NHPTT Select the next highest pit. This moves through the pits in the

opposite direction of NLPIT.

NLMoves the displayed, active marker to the next signal peak of

lower wavelength (to the left).

NLPIT Select the next left pit.

MMSelect next minimum peak. Just as NH (next highest) goes to the

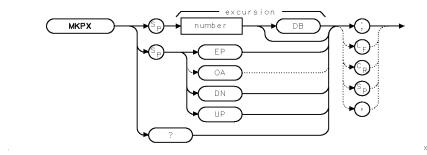
next highest peak, this goes to the next lowest peak.

NMPIT Select the next lowest pit. This would be used to move up after

using MKPIT.

NRMoves the displayed, active marker to the next signal peak of

higher wavelength (to the right).


NRPIT Select the next right pit.

The peak-excursion command, MKPX, determines what constitutes a peak in a trace. The pit-excursion command, MKPITX, determines what constitutes a pit in a trace.

See Also MKPX, VAVG, SMOOTH, VB, MKTRACE

MKPX

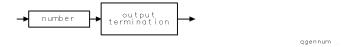
Select minimum signal excursion for peak signal identification.

ltem	Description		
Peak-Excursion Range	0.01 - 300 dB		
Step Increment	1 scale division during log mode. 1 scale division at top graticule line .915 dB during linear mode.		
Preset State	MKPX 3DB		

Example Set the marker-peak excursion to 20 dB, so that only very large signal excursions are recognized by the marker-peak and signal-identification functions.

70 OUTPUT 723;"MKPX 20DB;"

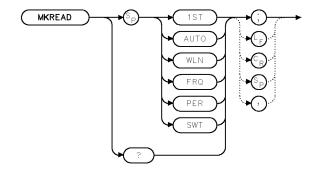
Set peak excursion to 20 dB.


Description The MKPX command specifies the minimum signal excursion for signal identification and the marker-peak functions (MKPK). Signal movement less than the peak-excursion value is not considered a peak. To be a peak, the skirt of the signal response must rise by at least the peak-excursion value, and then fall by at least the peak-excursion value.

The default peak-excursion value is 3 dB for signals displayed on a logarithmic scale. This means that any signal with an excursion of less than 3 dB on either side of its bandwidth shape is not identified as a signal. If the marker-peak command, MKPK HI, is executed on such a signal, the analyzer does not place a marker at the signal peak. For signals displayed on a linear scale, the default peak excursion equals

$$excursion = 1 - 10^{\frac{-MKPX}{200}}$$

Note that if the peak excursion is too small, noise spikes are identified as signals. Use VAVG or SMOOTH to minimize noise spikes so that signal peaks can be distinguished from noise spikes.


Query Response

See Also MKPK, PEAKS and marker functions.

MKREAD

Select the active trace information type displayed by the marker readout.

xmkred

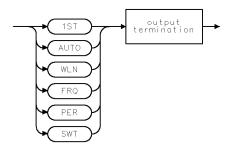
ltem	Description	
Preset State	MKREAD AUTO	

Example

- 10 OUTPUT 723; "TS; MKN; "
- 20 OUTPUT 723; "MKREAD WLN;"

Sweep. Activate marker.

Display wavelength at marker position.

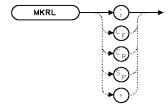

Description The MKREAD command selects the type of active trace information displayed by the marker readout and queried with the MKWL?, MKT?, and MKA? commands.

> The information listed by the marker varies depending on whether the analyzer is in zero-span mode or sweeping a wavelength range. Use MKREAD to set the readout to one of the settings listed in the following table.

Marker Readout Information

Command Argument	Contents of Marker Readout	Wavelength Query (MKWL?)	Time Query (MKT?)	Amplitude Query (MKA?)
WLN	Wavelength at marker position	Gives wavelength at marker position	Gives marker position in units of sweep time marker sweep time	Gives marker amplitude
FRQ	Frequency at marker position	Gives frequency marker position	Gives marker position in units of sweep time marker sweep time	Gives marker amplitude
PER	Marker period equals inverse of marker wavelength	Marker period equals inverse of marker wavelength	Gives marker position in units of sweep time	Gives marker amplitude
SWT	Marker position in units of sweep time	Gives marker wavelength	Gives marker position in units of sweep time	Gives marker amplitude
IST	Inverse of sweep time	Gives marker wavelength	Gives 1/sweep-time	Returns marker amplitude
AUTO	Wavelength at marker position during zero-span mode, marker position in units of sweep time	Gives marker wavelength	Gives marker position in units of sweep time	Gives marker amplitude

Query Response



qmkred .

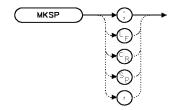
See Also MKN, MKD, MKAL, MKAR, MKWL, MKT, MKA, SP, MEASURE

MKRL

Move the active marker to the reference level.

YMKRI

Example


- OUTPUT 723; "SNGLS; TS; "
- Sweep trace A. OUTPUT 723; "MKPK HI;" Place marker at highest signal.
- 70 OUTPUT 723; "MKRL;"
- Set reference level equal to marker amplitude.
- 80 OUTPUT 723;"TS;"

Sweep new measurement range.

Description The MKRL command sets the reference level equal to the amplitude of the displayed active marker. Update trace data after executing MKRL. An error condition occurs if the active marker is a relative type that has been activated by the MKD, MKAL, or MKAR commands.

MKSP

Set span equal to wavelength difference of markers.

XMKSP

Example


60	OUTPUT	723; "SNGLS; TS;"	$Activate\ single ext{-sweep}\ mode.$
70	OUTPUT	723; "MKN; MKPK HI;"	Mark the highest point on the trace.
80	OUTPUT	723;"MKD;"	Activate the delta marker.
90	OUTPUT	723;"MKPK NH;"	Move the delta marker to the second highest
			peak.
100	OUTPUT	723; "MKSP; TS; "	Set the span equal to the wavelength difference
			between the markers.

Description The MKSP command operates only during the relative-marker mode (delta). MKSP is inoperative after MKAL or MKAR is executed. If MKD has been executed, MKSP sets the start and stop wavelength equal to the wavelength of the delta marker and reference marker. The start and stop wavelength correspond to the markers on the left and right, respectively.

See Also MKD, MKAL, MKAR

MKSS

Set center-wavelength step size equal to the wavelength difference between delta markers.

\mathbf{E}	xa	m	nl	e
_	21 CU	111	N .	\sim

- OUTPUT 723; "STARTWL 600NM; STOPWL 800NM;"
- 40 OUTPUT 723; "MKN EP;"
- OUTPUT 723; "MKCWL; " 50
- 60 OUTPUT 723;"MKD;"
- OUTPUT 723; "MKPK NH;"
- OUTPUT 723;"MKSS;"

Set measurement range.

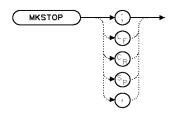
Move marker to fundamental, using front-panel knob, then press ACCEPT VALUE key.

Move the marked signal to the center of the display.

Turn on delta marker.

Move the marker to the next

highest peak.


Set the center-wavelenath step size equal to the delta marker wavelength separation.

Description The MKSS command uses delta marker information to set the centerwavelength step size. Delta markers must be displayed before using this command. MKSS is inoperative when executed after MKAL or MKAR. MKSS sets the center-wavelength step size equal to the wavelength difference of the delta and reference markers.

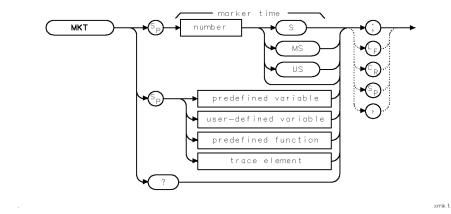
See Also SS, MKD

MKSTOP

End the sweep at the current active marker.

XMKSTP

Example


10 OUTPUT 723; "MKSTOP;"

Description The MKSTOP command ends the sweep at the current active marker instead of at the end of the trace when in continuous sweep mode. Sweep time can be reduced by not sweeping past the marker. The next sweep starts the trace over.

See Also MKCONT, MKN

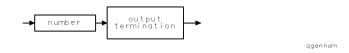
MKT

Position marker in units of time.

ltem	Description
Marker-Time Range	± 1000 seconds
Step Increment	1 major horizontal scale division.

Example

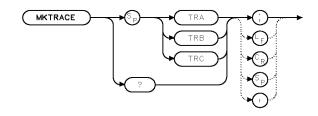
- OUTPUT 723; "SP 0; SNGLS; TS; "
- 40 OUTPUT 723;"MKN;"
- 50 OUTPUT 723; "MKT?;"


Set measurement range to zero span.

Display active marker.

Query value of the marker position, in units of time.

Description Use the MKT command during zero span mode. MKT? queries the marker position in units of time, unless MKREAD IST has been executed, when MKT? gives the marker position as an inverse of the sweep time at the marker. As a predefined variable, MKT represents either the wavelength or the time position of the active marker and can be very useful during math operations and data analysis. MKT can also position the displayed, active marker on a trace in units of time, relative to the left end of the trace. If the marker is a delta marker, the time is figured relative to the reference marker.

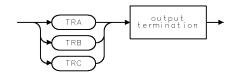

Query Response

See Also MKREAD, SP

MKTRACE

Position the active marker on the specified trace.

ltem	Description
Preset State	MKTRACE TRA

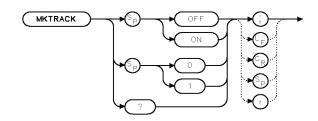

Example

10 OUTPUT 723; "MKTRACE TRB;"

Move the marker to trace B.

 $\begin{array}{c} \textbf{Description} & \textbf{The MKTRACE command moves the displayed, active marker to the specified} \\ & \textbf{trace.} \end{array}$

Query Response


QMKTRC .

XMKTRC

See Also MKA, MKAL, MKAR, MKD, MKWL, MKMIN, MKN, MKNOISE, MKP, MKPAUSE, MKPK

MKTRACK

Maintain the marked signal at center frequency.

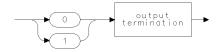
XMKTRK

ltem	Description
Preset State	MKTRACK OFF

Example

- 50 OUTPUT 723; "MKPK HI; MKTRACK ON;"
- 60 OUTPUT 723; "SP 100NM;"
- 70 OUTPUT 723; "MKTRACK OFF;"

Turn on marker tracking.

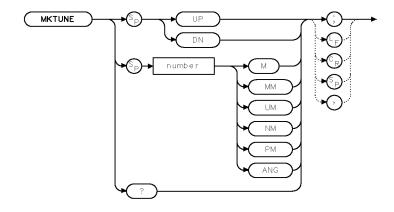

Reduce the span.

Turn off marker tracking.

Description The MKTRACK command keeps the active marker and the point it marks at the center of the display during changes in wavelength span.

> When MKTRACK ON is executed, the spectrum analyzer initiates several sweeps as it reduces the span in stages. If span is reduced significantly when marker tracking is off, the signal is likely to be outside of the measurement range.

Query Response

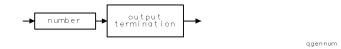

qgen0 .

See Also MKTV, SP, ZOOMRB

XMKTUN

MKTUNE

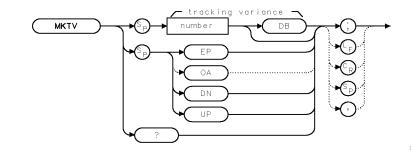
Fix tune the optical spectrum analyzer to a specified wavelength.


Example 10 OUTPUT 723; "MKTUNE 850NM;"

Description The MKTUNE command places the optical spectrum analyzer in single sweep and tunes to the specified wavelength. A marker is also activated at the wavelength.

NOTE

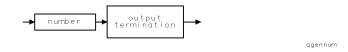
If INSTMODE is not set to PRESEL, MKTUNE generates an error message.


Query Response

See Also INSTMODE

MKTV

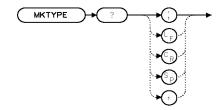
Specify amplitude variance monitored by the marker-tracking function.


ltem	Description
Tracking-Variance Range	0 - 300 dB
Step Increment	1 major vertical scale division during log mode. 1 major vertical scale division at top graticule line .915 dBm during linear mode.
Preset State	MKTV 5DB

Example	30 OUTPUT 723;"STARTWL 600NM;STOPWL 1700NM;" 40 OUTPUT 723;"TS;MKPK HI;"	Set measurement range. Sweep trace A. Place the active marker on the highest signal peak.
	50 OUTPUT 723;"MKTV 1DB;"	Change marker-tracking variance to 1 dB.
	60 OUTPUT 723;"MKTRACK ON;" 70 OUTPUT 723;"SP 200NM;"	Turn on marker tracking. Change the span.

Description The MKTV command specifies the amplitude variance monitored by the marker-tracking function (MKTRACK) to determine the proper signal to track.

With each sweep, the marker-tracking function verifies that the marker is kept on the same signal by comparing the amplitude of the currently marked signal to the amplitude of the signal marked during the previous sweep. If the two amplitudes are not within the tracking-variance limit, the marker is moved to an adjacent signal and amplitudes are compared again. Reduce the marker-tracking variance when tracking a signal that has an amplitude close to the level of the other signals in the measurement range.


Query Response

See Also MKTRACK

MKTYPE

Return the type of active marker.

XMKTYP

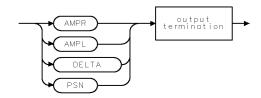
Example

- 30 OUTPUT 723;"MKN;"
- 40 OUTPUT 723; "MKTYPE?;"
- 50 ENTER 723; A\$

Activate normal marker.

Send marker type to computer.

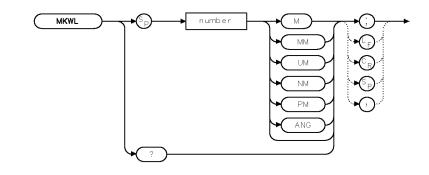
 $As sign\ response\ to\ computer\ variable.$


Description The MKTYPE query returns one of the four types of active markers:

- Position marker (normal)
- Delta marker
- Amplitude-left marker
- Amplitude-right marker

The position marker (PSN) is activated by MKN and is positioned at any point on the trace meeting the wavelength or time criteria. MKPK, MKPAUSE, MKTRACK, and MKNOISE also activate the position marker. The delta marker (DELTA) is activated by MKD and is positioned at a point, either side of the reference marker, that meets the wavelength or time criteria. The amplitude-right marker (AMPR) is activated by MKAR and is positioned to the right of marker #1 at the first point that meets the amplitude criteria. The amplitude-left marker (AMPL) is activated by MKAL and is positioned to the left of marker #1 at the first point that meets the amplitude criteria.

MKTYPE


Query Response

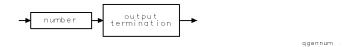
QMKTYP

MKWL

Position active marker according to wavelength, or return the marker wavelength.

ltem	Description
Range	600 nm to 1700 nm

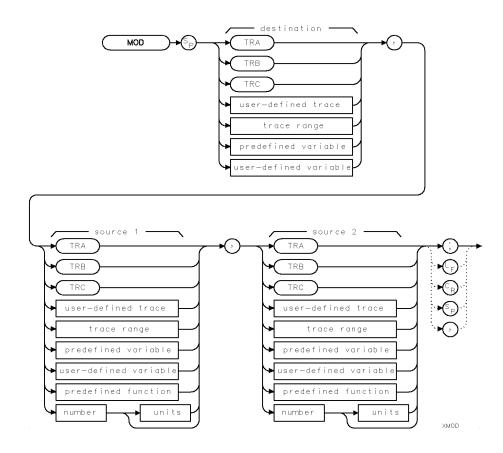
Example


OUTPUT 723; "MKWL 750NM;"

Description For wavelength spans greater than zero, the MKWL command returns the wavelength of the active marker. MKWL can also return the wavelength difference between the reference and delta marker when the relative-marker mode has been activated by the MKD command.

> For wavelength spans equal to zero, MKWL sends the marker position in terms of time. As a predefined variable, MKWL represents either the wavelength or the time position of the active marker and can be very useful during math operations and data analysis. The marker readout and queried information varies depending on span and the marker-readout setting selected by the MKREAD command.

MKWL can also be used to position the active marker on the trace in terms of time or wavelength. If the active marker is not displayed, MKWL places it on the trace at the specified wavelength. If the position of the marker is not specified, MKWL places it at the center of the trace. If more than one trace is displayed, MKWL marks the active trace, or marks trace A, B, or C, in that order; or marks the trace specified by MKTRACE.


Query Response

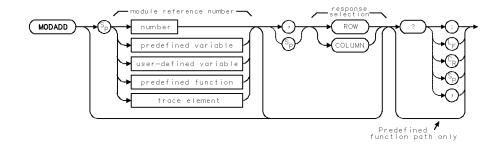
See Also SP, MKTRACE, MKREAD, or commands affecting wavelength such as WLOFFSET, CENTERWL, SP, STARTWL, STOPWL

MOD

Retain remainder after division.

ltem	Description
Source or Destination Amplitude Range	0 – 10,000 measurement units for linear trace data in <i>TRA, TRB, TRC, trace range</i> , or <i>user-defined trace</i> .
	—32,768 - +32,767 measurement units for logarithmic trace data in <i>TRA, TRB, TRC, trace range</i> , or <i>user-defined trace</i> .
	$\pm 1.8 \times 10^{308}$ when using <i>number, predefined variable</i> or <i>user-defined variable</i> .
	Zero not allowed for source 2.
Source-Length Range	1 – 2048 position units. Default is 800 position units when using <i>TRA, TRB, TRC</i> . Truncated if longer than destination length. If shorter than destination length, last element is extended for operation.
Destination-Length Range	1 - 2048 position units.

Example Set the measurement range to the remainder of the center wavelength divided by 100 nm.


> 30 OUTPUT 723; "MOD SP, CENTERWL, 100NM;" Set span equal to remainder of center wavelength divided by 100 nm. 40 OUTPUT 723; "TS; " Sweep new measurement range.

Description The MOD command stores in the destination the remainder left by the division of source 1 by source 2.

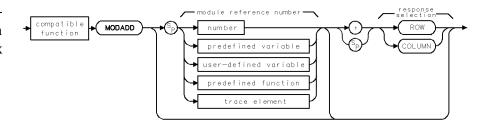
> Source 2 cannot be equal to 0, or an error results. When the source is TRA, TRB, TRC, or trace range, ensure the data reflects one complete sweep with the SNGLS and TS commands.

MODADD

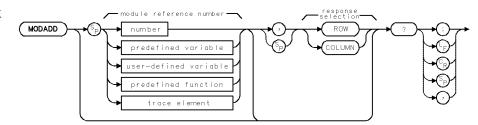
Return the HP-MSIB address of the specified slave module.

ltem	Description
Reference-Number Range	1 to hardware limit

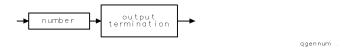
Example

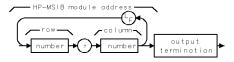

- 30 OUTPUT 723; "MODADD?;"
- 40 ENTER 723; N, M, O, P, Q, R, S, T

Query HP-MSIB address of all modules.

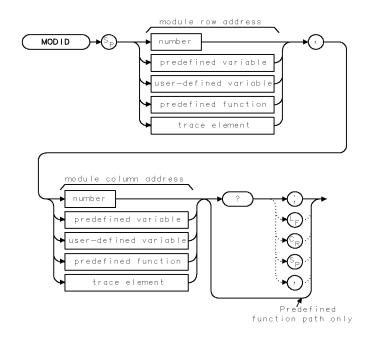

Assign row and column addresses to computer variables.

Description The MODADD command returns the HP-MSIB address of the specified slave module. The HP-MSIB address corresponds to a module position in the address map. When either the *row* parameter or *column* parameter is included, MODADD only returns the HP-MSIB row or column address.


Predfined-Function Syntax


Query Syntax

Query Response


Row or Column is Returned

Complete HP-MSIB Addresses are Returned

MODID

Identify module or instrument at HP-MSIB address.

XMODID

ltem	Description
Row Range	Integers, 0 - 7
Column Range	Integers, 0 - 31
Restrictions	MODID 0,31 is illegal

Example

50 OUTPUT 723; "MODID M_OD, 23?;"

OUTPUT 723; "M_OD?; "

Query model number of module at HP-MSIB address $M_{-}OD$, 23 (row = $M_{-}OD$, column = 23).

Assign model number to N.

Query value of M $_$ OD, which is the row

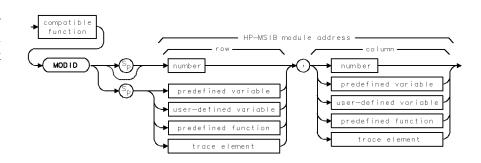
number

30 ENTER 723;M

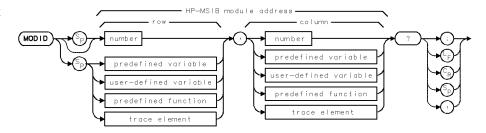
60 ENTER 723; N

70

Assign row number to computer variable.


90 PRINT "THE"; N; " MODULE IS IN ROW"; M; ", COLUMN 23"

Description The MODID command identifies the modular spectrum analyzer module or instrument located at the specified HP-MSIB address.

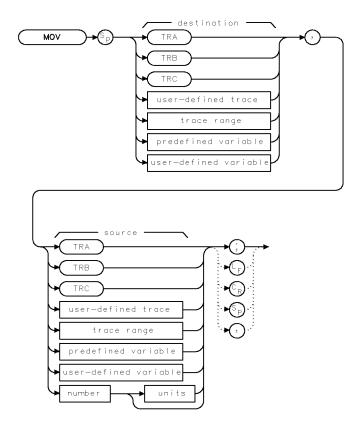

> MODID must be used as either a query or as a source in another analyzer-command function. Form a query by ending the MODID statement with a question mark (?). When used as a query, MODID sends the model number of the module at the specified HP-MSIB address to the computer.

Use MODID as a source by incorporating the MODID statement into the source of any spectrum-analyzer command that contains predefined function in its syntax diagram. When MODID is used as a source, the HP-MSIB address of the specified module is used for operation by the command that contains MODID.

Predefined-Function Syntax

Query Syntax

qgennum


Query Response The model number less any alpha-character prefix or suffix is sent. If no module is present or the address is not within the optical spectrum analyzer's control area (slave area), a 0 is given. Alpha characters are converted as follows:

output termination n umb e r

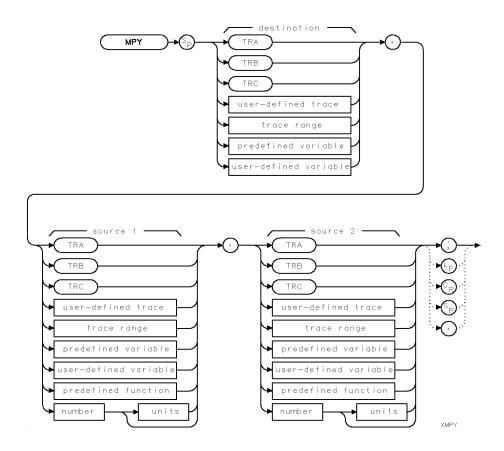
MOV

Transfer value of trace, variable, or number to a trace or variable.

ltem	Description
Source-Length Range	1 - 2048 position units. Default is 800 position units when using <i>TRA</i> , <i>TRB</i> , <i>TRC</i> . Truncated if longer than destination length. If shorter than destination length, last element is extended for operation.
Destination-Length Range	1 - 2048 position units.

xmo v

Example Position a signal peak at the display line.


- 20 OUTPUT 723; "SNGLS; "
- 30 OUTPUT 723; "STARTWL 600NM; STOPWL 1700NM;"
- 40 OUTPUT 723; "TS; MKPK HI; "
- 50 OUTPUT 723; "DL ON;"
- 60 OUTPUT 723; "MOV DL, MKA;"

Activate single-sweep mode.
Set measurement range.
Sweep trace A. Place a marker at the highest signal level detected.
Turn on the display line.
Set the display-line value equal to the marker amplitude by storing the value of the markeramplitude variable, MKA, in the display-line variable, DL.

Destination The MOV command stores the contents of the source in the destination. When the source is TRA, TRB, TRC, or trace range, ensure the data reflects one complete sweep using the SNGLS and TS commands. The default is 800 position units when using TRA, TRB, TRC and is truncated if the trace is longer than destination length. If the trace is shorter than the destination length, the last element is replicated to complete the trace.

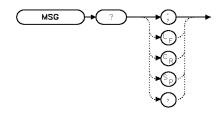
MPY

Multiply sources and store in the destination.

ltem	Description	
Source or Destination Amplitude Range	0 – 10,000 measurement units for linear trace data in <i>TRA, TRB, TRC, trace range</i> , or <i>user-defined trace</i> .	
	—32,768 - +32,767 measurement units for logarithmic trace data in <i>TRA, TRB, TRC, trace range</i> , or <i>user-defined trace</i> .	
	\pm 1.8 $ imes$ 10 308 when using <i>number</i> , <i>predefined variable</i> , or user-defined variable.	
Source-Length Range	3 - 2048 position units. Default is 800 position units when using <i>TRA</i> , <i>TRB</i> , <i>TRC</i> . Truncated if longer than destination length. If shorter than destination length, last element is extended for operation.	
Destination-Length Range	3 - 2048 position units.	

Example

10 OUTPUT 723; "MPY CENTERWL, CENTERWL, 2;" Double the center wavelength.


Description The MPY command multiplies the sources, point by point, and stores the contents in the destination.

In case of overflow, an error is reported and the result is limited to the amplitude range. When the source is TRA, TRB, TRC, or trace range, ensure the data reflects one complete sweep using the SNGLS and TS commands.

The default is 800 position units when using TRA, TRB, TRC and is truncated if the trace is longer than destination length. If the trace is shorter than the destination length, the last element is replicated to complete the trace.

MSG

Return the characters displayed in the message area.

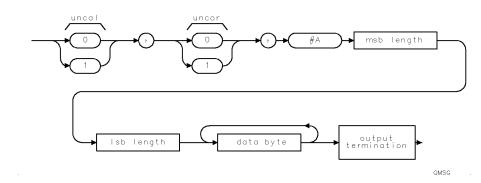
XMSG

Example

- 40 OUTPUT 723; "MSG?;" ALLOCATE Message\$[40]
- ENTER 723 USING "-K"; Cal, Cor, Msg\$

Query the message to the computer. Create computer array (string) for storage of character message.

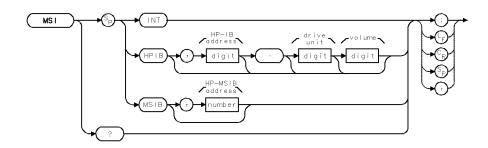
Assign the messages to two Boolean variables and one string. (The HP BASIC code for image, -K, enters line feeds into the string.)


- 70 PRINT
- 80 IF Cal THEN PRINT "uncalibrated"
- 90 IF Cor THEN PRINT "uncorrected"
- 100 PRINT Msg\$[3]

Print the string, beginning with the third character.

Description The MSG query returns the characters displayed in the message area on the screen.

> The query returns 2 Boolean responses that indicate the presence of UNCAL and UNCOR, respectively. Whenever a message is in the message area, or UNCAL or UNCOR is displayed, the MESSAGE bit of the status byte is set true.


Query Response

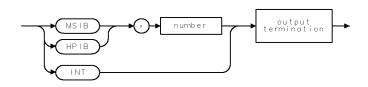
See Also USERMSG

MSI

Select location for storing files: HP-IB device, HP-MSIB device, or internal memory.

ltem	Description
HP-IB Address Range	0 - 7
Drive-Unit Range	0 - 9
Volume Range	0 - 9
HP-MSIB Address Range	0 - 255

Description When power is applied to the spectrum analyzer, internal memory is selected. The IP command does not change the MSI selection.

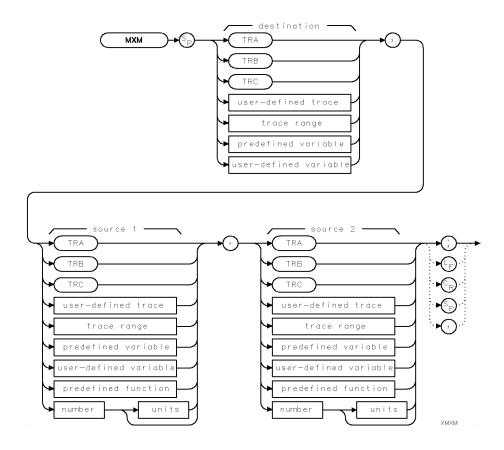

INT selects internal memory.

HPIB selects external memory that is located on HP-IB, such as a disk drive. Connect the device to the spectrum-analyzer HP-IB port before executing MSI. The MSI command indicates the HP-IB address of the device, and for disk drives, indicates the unit and volume number. The default selection is HP-IB address 0, unit 0, volume 0 (MSI HPIB, 0.00).

MSIB selects external memory that is located on the HP-MSIB, such as a memory card. The MSI command indicates the HP-MSIB address of the device. The default address is the HP-MSIB address of the display (for example, the HP 70004) connected to the spectrum analyzer. New addresses must be specified as a single number. Since most storing devices are at row-address 0, the number that MSI specifies is the column address. If you wish to store on a device that is not at row zero, calculate the HP-MSIB address as follows:

 $address = column \ address + [(row \ address)(32)]$

Query Response



QMST

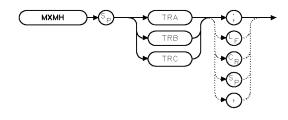
See Also FORMAT, LIMIRCL, LIMISAV, LOAD, MODADD, PREFX, PURGE, RCLD, RCLS, RCLT, RCLU, STOR, SAVED, SAVES, SAVET, SAVEU.

MXM

Compare traces and variables, then store greater values.

ltem	Description	
Source or Destination Amplitude Range	0 - 10,000 measurement units for linear trace data in <i>TRA, TRB, TRC, trace range</i> , or <i>user-defined trace</i> . —32,768 - +32,767 measurement units for logarithmic trace data in <i>TRA, TRB, TRC, trace range</i> , or <i>user-defined trace</i> .	
	$\pm 1.8 \times 10^{308}$ when using <i>number</i> , predefined variable, or user-defined variable.	
Source-Length Range	1 - 2048 position units. Default is 800 position units when using <i>TRA</i> , <i>TRB</i> , <i>TRC</i> . Truncated if longer than destination length. If shorter than destination length, last element is extended for operation.	
Destination-Length Range	1 - 2048 position units.	

Example Set the display-line level equal to the larger amplitude of two trace elements.


40	OUTPUT 723;"SNGLS;"	$Activate\ single ext{-}sweep\ mode.$
50	OUTPUT 723; "SP 500NM; CENTERWL 1000NM;"	Set measurement range.
60	OUTPUT 723;"TS;"	Sweep measurement range.
70	OUTPUT 723;"DL ON;"	Turn on the display line.
80	OUTPUT 723;"MXM DL, AMPU TRA[1], AMPU TRA[400];"	Compare the amplitude of the first and four-hundredth elements of trace A, then set the display line equal to the larger one.

Description The MXM command compares the sources, point by point, sending the greater value of each comparison to the destination. If one of the sources is a single value, it acts as a threshold and all values greater than the threshold are sent to the destination.

The default is 800 position units when using TRA, TRB, TRC and is truncated if the trace is longer than destination length. If the trace is shorter than the destination length, the last element is replicated to complete the trace.

MXMH

Activate maximum hold.

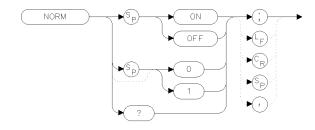
ltem	Description
Preset State	Inactive

Example

40 OUTPUT 723;"MXMH TRA;"

Write data into trace A. The value of the incoming data is compared with the current data, then the maximum of the two is placed in trace A.

XMXMH


Description The MXMH command compares the current amplitude value of each point on a trace to each corresponding value detected during the previous sweep, then

a trace to each corresponding value detected during the previous sweep, then retains the maximum values.

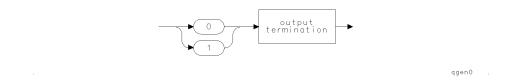
See Also TRPST

NORM

Controls trace normalization for stimulus-response measurements.

Example

OUTPUT 723; "NORM ON;" 100

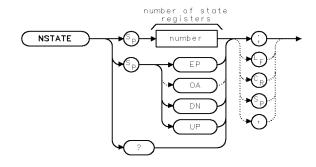

Description The NORM command turns on trace normalization. When trace normalization is turned on, its operation depends on whether a logarithmic or linear display is selected. With logarithmic displays, AMB ON is executed, and the reference level is set to 0 dB. With linear displays, the reference level offset and display line are set to place the current reference trace at the top of the screen and set it equal to a value of 1.000X. Next, the ADBTL trace math function is turned on. This normalizes the current trace to 1.000X.

> Turning off trace normalization simply disables the trace math enabled when NORM ON was executed. Note that turning off normalization in linear mode does not reset ROFFSET or DL to their previous values.

Query Response The query response value depends on the state of the NORM and MEASURE commands as shown in the following table:

NORM Query Response

	Query Response		
MEASURE State	NORM OFF	NORM ON	
SA	0	0	
SR	0	1	



See Also MEASURE, SRINPUT

XNSTAT

NSTATE

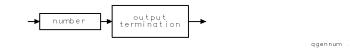
Set number of state registers.

ltem	Description	
Number Range	O to value limited by available memory, or maximum of 20.	

Example

- 10 OUTPUT 723; "PSTATE OFF;" Deactivate state-register protection.
- 20 OUTPUT 723; "NSTATE 0;" Specify 0 registers, erasing contents of all registers.

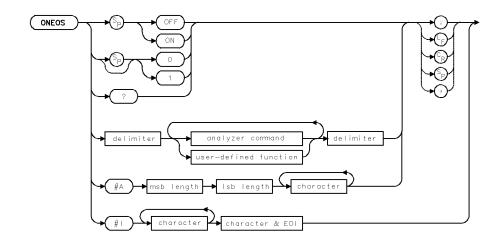
Description The NSTATE command allocates user memory for the storage of state-register files.


When the number of state-register files is decreased, the higher numbered files are deleted and their contents are lost. Since state-register files occupy large amounts of user memory, conserve memory space by limiting their number. Use the PSTATE command to protect state registers against accidental disposal with the NSTATE, STOR, or SAVES command. PSTATE does not prevent erasure with the ERASE or PURGE command.

The number of state-register files is not affected by instrument preset (IP) or power loss. However, the ERASE command sets the number of files to two after erasing the contents of internal memory. The last-state register, controlled by the POWERON command, does not form a state-register file, and thus is not affected by the NSTATE command. (The last-state register saves the state of the spectrum analyzer before power is removed, depending on the setting of the POWERON function.)

NSTATE

To select storage location (HP-IB device, HP-MSIB device, or internal memory), execute MSI before executing NSTATE. Internal memory is the storage device when power is applied to the spectrum analyzer.)

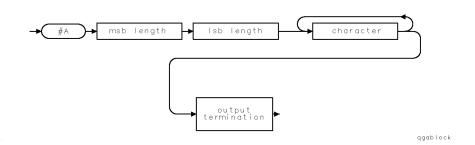

Query Response

See Also POWERON, SAVES, PSTATE

ONEOS

Define list of functions executed at the end of the sweep.

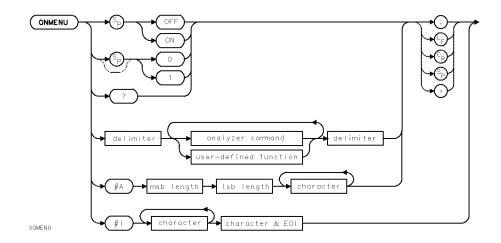
ltem	Description	
Delimiters	Mark the beginning and end of the algorithm.	
Preset State	ONEOS OFF	


Example Automatically measure a new wavelength range with each sweep.

```
140 OUTPUT 723; "VARDEF I,0;"
                                                                 Define user-defined variable equal to 0.
150
     OUTPUT 723; "VARDEF W,700NM;"
                                                                 Define user-defined variable equal to 700 nm.
     OUTPUT 723; "ONEOS^";
160
                                                                 Begin definition of on-end-of-sweep algorithm. The
                                                                following algorithm measures a higher harmonic
                                                                 of the calibration wavelength with each sweep.
     OUTPUT 723; "MOV SP, 200NM; ";
170
                                                                 Set span to 200 nm.
180
     OUTPUT 723; "IF I,LT,500; THEN; ";
                                                                 If I is less than 500, set I equal to I + 100.
                                                                 Otherwise, set I equal to 100.
190 OUTPUT 723; "ADD I,I,100; ELSE; MOV I,100; ENDIF; ";
210 OUTPUT 723; "ADD CENTERWL, W, I; ";
                                                                 Set the center wavelength equal to F \times I.
220 OUTPUT 723; "^; "
                                                                 End on-end-of-sweep algorithm.
```

Description The ONEOS command executes the algorithm in the data field when the sweep, trace processing, and other internal end-of-sweep functions are completed. The ONEOS algorithm is user-defined and consists of other analyzer commands, much like the user-defined functions created with the FUNCDEF command. The algorithm is stored in internal memory. Each time the sweep is completed, the algorithm is executed. The end-of-sweep status bit in the status byte is not set until the on-end-of-sweep algorithm is completed. DISPOSE ONEOS and FORMAT deletes the on-end-of-sweep algorithm from internal memory. The command parameters are as follows:

- ONEOS ON or ONEOS 1 activates the algorithm.
- ONEOS OFF, ONEOS O, or IP deactivates the algorithm. (Executing CLEAR 723 also deactivates the algorithm.)
- ONEOS? queries the algorithm definition to the computer.


Query Response

See Also PAUSE, DEBUG, ABORT, RETURN, DISPOSE, FORMAT, PROTECT and sweep-controlling commands, such as TS, SNGLS, CONTS, TM, VTL, VTH

ONMENU

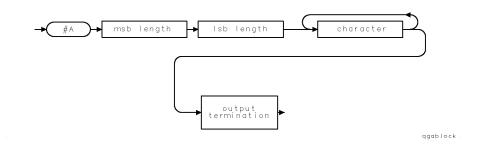
Define list of functions executed when (MENU) is pressed.

ltem	Description
Delimiters	Mark the beginning and end of the algorithm.
Preset State	OFF

Example

- 10 OUTPUT 723; "ONMENU |;"
- 20 OUTPUT 723; "TITLE &MENU key pressed.&;"
- 30 OUTPUT 723;"|;"

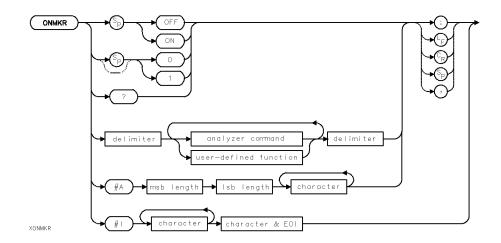
 $Begin\ definition\ of\ on\hbox{-}menu\hbox{-}keypress\ algorithm.$


 $Set\ title.$

End on-menu-keypress algorithm.

Description The ONMENU command executes the algorithm in the data field when internal (MENU) key functions are completed. The ONMENU algorithm is user-defined and consists of other analyzer commands, much like the user-defined functions created with the FUNCDEF command. The algorithm is stored in internal memory. DISPOSE ONMENU and FORMAT delete the on-menu-keypress algorithm from internal memory. Command parameters are as follows:

- ONMENU ON or ONMENU 1 activates the algorithm.
- ONMENU OFF, ONMENU O, or IP deactivates the algorithm. (Executing CLEAR 723 also deactivates the algorithm.)
- ONMENU? queries the algorithm definition to the computer.


Query Response

See Also ABORT, DEBUG, DISPOSE, FORMAT, PAUSE, PROTECT, RETURN

ONMKR

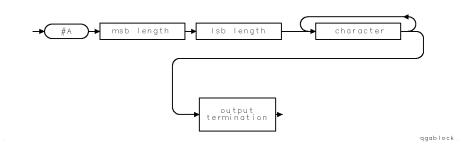
Define list of functions executed when sweep reaches pause marker.

ltem	Description
Delimiters	Mark the beginning and end of the algorithm.
Preset State	OFF

Example

10 OUTPUT 723;"ONMKR |;"

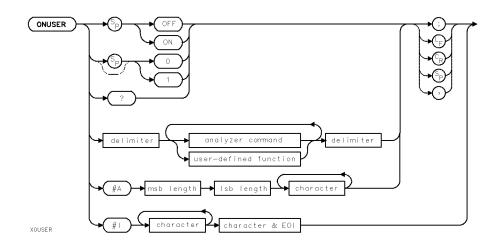
- $Begin\ definition\ of\ on-marker-pause\\ algorithm.$
- 20 OUTPUT 723; "TITLE &Reached marker.&;"
- $Set\ title.$


30 OUTPUT 723;"|;"

End on-marker-pause algorithm.

Description The ONMKR command executes the algorithm in the data field when internal marker functions are completed. MKPAUSE must be set to a non-zero time. The ONMKR algorithm is user-defined and consists of other analyzer commands, much like the user-defined functions created with the FUNCDEF command. The algorithm is stored in internal memory. Each time the sweep reaches the marker, the algorithm is executed. DISPOSE ONMKR and FORMAT delete the on-marker-pause algorithm from internal memory. Command parameters are as follows:

- ONMKR ON or ONMKR 1 activates the algorithm.
- ONMKR OFF, ONMKR O, or IP deactivates the algorithm. (Executing CLEAR 723 also deactivates the algorithm.)
- ONMKR? queries the algorithm definition to the computer.


Query Response

See Also ABORT, DEBUG, DISPOSE, FORMAT, MKPAUSE, PAUSE, PROTECT, RETURN

ONUSER

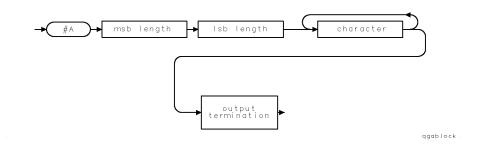
Define list of functions executed when (USER) is pressed.

ltem	Description
Delimiters	Mark the beginning and end of the algorithm.
Preset State	OFF

Example

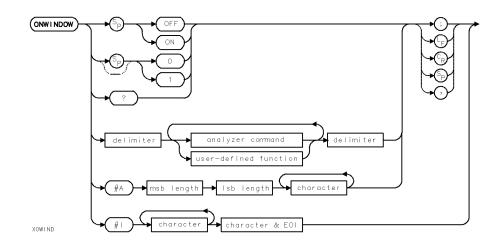
- 10 OUTPUT 723; "ONUSER |;"
- 20 OUTPUT 723;"TITLE &USER key pressed.&;"
- 30 OUTPUT 723;"|;"

Begin definition of on-user-keypress algorithm.


 $Set\ title.$

 $End\ on\hbox{-}user\hbox{-}keypress\ algorithm.$

Description The ONUSER command executes the algorithm in the data field when internal (USER) key functions are completed. The ONUSER algorithm is user-defined and consists of other analyzer commands, much like the user-defined functions created with the FUNCDEF command. The algorithm is stored in internal memory. Each time the (USER) key is pressed, the algorithm is executed. DISPOSE ONUSER and FORMAT delete the on-user-keypress algorithm from internal memory. Command parameters are as follows:


- ONUSER ON or ONUSER 1 activates the algorithm.
- ONUSER OFF, ONUSER O, or IP deactivates the algorithm. (Executing CLEAR 723 also deactivates the algorithm.)
- ONUSER? queries the algorithm definition to the computer.

Query Response

See Also ABORT, DEBUG, DISPOSE, FORMAT, PAUSE, PROTECT, RETURN

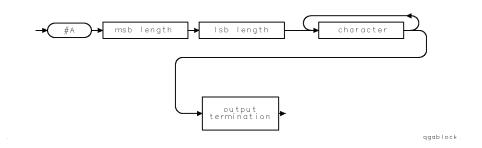
ONWINDOW Define list of functions executed when display window is recreated.

ltem	Description
Delimiters	Mark the beginning and end of the algorithm.
Preset State	OFF

Example

- OUTPUT 723;"ONWINDOW |;"
- 20 OUTPUT 723; "TITLE &Redrawing window.&;"
- OUTPUT 723;"|;" 30

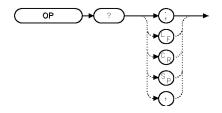
Begin definition of on-window-recreation algorithm. Set title.


End on-window-recreation algorithm.

ONWINDOW

Description The ONWINDOW command executes the algorithm in the data field when the analyzer display needs to be redrawn. The ONWINDOW algorithm is user-defined and consists of other analyzer commands, much like the user-defined functions created with the FUNCDEF command. The algorithm is stored in internal memory. Each time the display is redrawn, the algorithm is executed. DISPOSE ONWINDOW and FORMAT delete the on-window-recreation algorithm from internal memory. Command parameters are as follows:

- ONWINDOW ON or ONWINDOW 1 activates the algorithm.
- ONWINDOW OFF, ONWINDOW O, or IP deactivates the algorithm. (Executing CLEAR 723 also deactivates the algorithm.)
- ONWINDOW? queries the algorithm definition to the computer.


Query Response

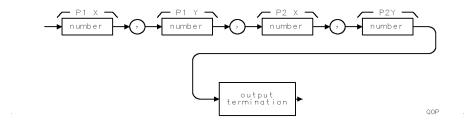
See Also ABORT, DEBUG, DISPOSE, FORMAT, PAUSE, PROTECT, RETURN

OP

Return coordinates of instrument window.

Example

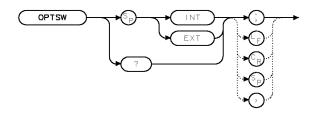
- 110 OUTPUT 723; "OP?;"
- 120 ENTER 723; P1x, P1y, P2x, P2y


 $Query\ coordinates\ of\ P1\ and\ P2.$

Assign values to computer variables.

Description The OP command queries the values of P_1 and P_2 for the current instrument window scale.

For the default instrument window, the X and Y coordinates for P_1 and P_2 are (112,16) and (911,383). P_1 corresponds to the lower-left vertex. P_2 corresponds to the upper-right vertex. If more than one instrument window is displayed, OP gives the values P_1 and P_2 for all windows.

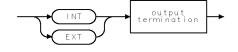

Query Response

See Also IWINDOW, CLRDSP

OPTSW

Activate the front-panel MONOCHROMATOR OUTPUT and PHOTODETECTOR INPUT ports.

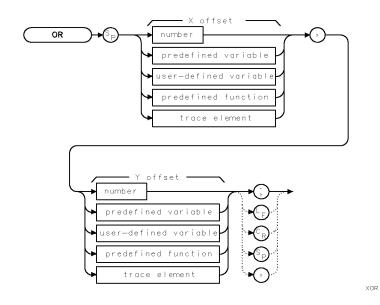
XOPTSW


Example

OUTPUT 723; "OPTSW INT;"

Description The OPTSW command selects the signal path on HP 71451B instruments (HP 70951B modules). The INT argument selects the normal signal path through the optical spectrum analyzer's monochromator to the photo diode for detection. The EXT argument makes the monochromator's output available at the front panel's MONOCHROMATOR OUTPUT connector. Also, the front panel's PHOTODETECTOR INPUT connector is activated for input.

The correction data is not changed when the switch is changed.


Query Response

QOPTSW

See Also CORSEL, INSTMODE

OR Set position of origin.

ltem	Description
X-Offset Range	Determined by SCALE or DWINDOW.
Y-Offset Range	Determined by SCALE or DWINDOW.
Preset State	OR 0,0

Example Position a grid.

10 OUTPUT 723; "TRDSP TRA,OFF;"	
---------------------------------	--

20 OUTPUT 723; "CLRDSP;"

Turn off trace A.

Clear graphics from memory.

origin at 0,0 (lower-left corner). Set the units for the X and Y scale to their preset values, 0 to 1000.

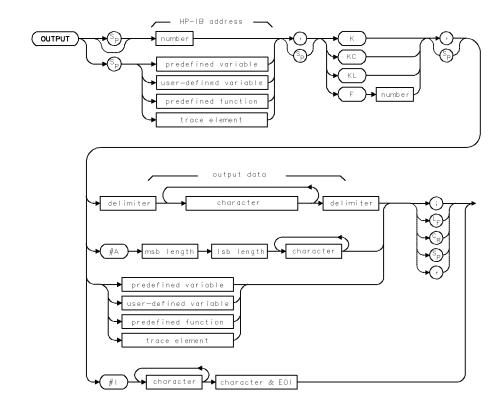
30 OUTPUT 723;"OR 100,200;"

Offset the origin 100 units horizontally and 200 units vertically.

40 OUTPUT 723;"PD;GRID 20,40,5,10;" Draw

Draw a grid. Its position is offset according to OR (line 180).

Position a graphics window.


10	OUTPUT	723; "CLRDSP;"	${\it Clear\ graphics\ from\ memory}.$
20	OUTPUT	723;"OR 100,500;"	Offset the origin 100 units horizontally and 500 units vertically.
30	OUTPUT	723; "DWINDOW 100,500,TRA	; " Define a graphics window, scaled to trace- A parameters.
40	OUTPUT	723; "PD; GRAPH TRA; "	$\overline{Draw}\ trace\ A\ inside\ the\ window.$
50	PAUSE		Observe display, then press CONTINUE on computer keyboard.
60	OUTPUT	723;"DWINDOW OFF;"	Turn off the window.
Positio	n a grap	phics item.	
Position 10		ohics item. 723;"BLANK TRA;"	Blank trace A.
	OUTPUT		Blank trace A. Clear graphics from memory.
10	OUTPUT OUTPUT	723; "BLANK TRA;"	
10 20	OUTPUT OUTPUT OUTPUT	723; "BLANK TRA;" 723; "CLRDSP;"	Clear graphics from memory.
10 20 30	OUTPUT OUTPUT OUTPUT OUTPUT	723; "BLANK TRA;" 723; "CLRDSP;" 723; "IT 1; VW OFF; "	Clear graphics from memory. Address item 1 and blank it.

 $\begin{array}{c} \textbf{Description} & \textbf{The OR command offsets the position of graphics on the display relative to} \\ & P_1, \text{ in the current scale units set by the SCALE or DWINDOW command.} \end{array}$

Use OR to position items created with the IT command or to position new coordinate systems (graphics window) created with the window command, DWINDOW.

See Also SCALE, DWINDOW, IWINDOW, IT, PA, PR

OUTPUT Control HP-IB with the analyzer as the controller.

	ltem	Description
ļ	Address Range	Integers, 0 - 30

Example Use the analyzer as a controller on HP-IB. In the example, the controlled HP-IB device is an HP 3478 multimeter at address 25. Press the user-defined key, VDM, to communicate with the multimeter.

150	REMOTE 7	Place all devices in remote status.
160	CLEAR 723	${\it Clear}$ the analyzer HP-IB interface buffer.
170	OUTPUT 723;"IP;"	$Preset\ analyzer.$
180	OUTPUT 723; "VARDEF NN, 0;"	Assign 0 to user-defined variable, NN.

OUTPUT

190	OUTPUT 723; "FUNCDEF VDM, ^";	Begin definition of user-defined function, called VDM.
200	OUTPUT 723; "OUTPUT 25, K, \$H5\$;";	Send message, "H5" to multimeter.
210	OUTPUT 723; "ENTER 25, K, NN;";	Receive value in amperes from multime-
		ter. Store value in NN.
220	OUTPUT 723; "CLRDSP;";	Clear graphics from memory.
230	OUTPUT 723; "PA 400,500;";	Set pen at (400,500).
240	OUTPUT 723; "MPY NN, NN, 1000; ";	Convert value to milliamperes.
250	OUTPUT 723; "DSPLY NN,7,4;";	Display value on analyzer screen.
260	OUTPUT 723; "RELHPIB; ";	Release control of HP-IB.
270	OUTPUT 723;"^;"	End definition of user-defined function.
280	OUTPUT 723; "KEYDEF 7, VDM, \$VDM\$;"	Assign function to user-defined key, called
		VDM.
290	SEND 7; UNL UNT DATA	Clear HP-IB of all talkers and listeners.
300	LOCAL 723	Place analyzer in local control. Press
		USER, then press the user-defined key,
		VDM, to communicate with the multimeter.

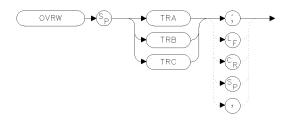
Description The OUTPUT command establishes the analyzer as a controller on HP-IB. Use OUTPUT to send data or instructions to an HP-IB device.

Since HP-IB allows one controller only on HP-IB, OUTPUT must be synchronized with computer operation or else must be incorporated into user-defined functions that are executed with keys when a computer is not connected to HP-IB. (Press (LCL) for manual operation.) If another controller is detected on HP-IB, the OUTPUT function is aborted. (See "Controlling Instruments Over HP-IB" in Chapter 6.)

Execute RELHPIB to discontinue analyzer control of HP-IB. HP-IB Address specifies the address of the device. Format formats the data as follows:

K sends characters (ASCII) with no terminator.

KC sends characters (ASCII), followed by carriage-return/line-feed (ASCII codes 13 and 10).


KL sends characters (ASCII), followed by line-feed (ASCII code 10) and END (end-or-identify).

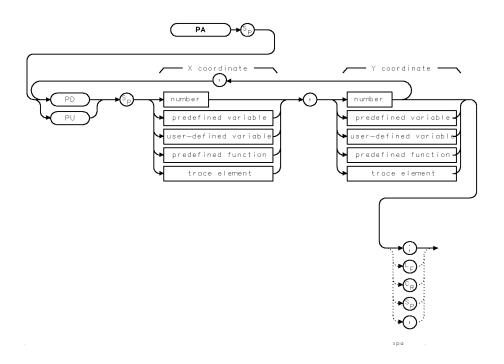
F sends data as ASCII-decimal numbers. In the syntax diagrams, the integer part of the number specifies the field width. The decimal part specifies the number of decimal places.

See Also ENTER, RELHPIB, ACTDEF, FUNCDEF

OVRW

Enable clear-write mode, but skip the initial clear.

Example


100 OUTPUT 723; "OVRW TRA;"

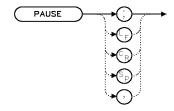
Set this mode for trace B.

Description The action of OVRW is identical to CLRW except that OVRW does not initially clear the internal representation of the trace (the display is still cleared).

PA

Move pen to absolute coordinate.

ltem	Description
X-Coordinate Range	Determined by SCALE or DWINDOW
Y-Coordinate Range	Determined by SCALE or DWINDOW


Example 140 OUTPUT 723; "PA PU 0,0;" 150 OUTPUT 723; "PA PD 1000,1000;" Move the pen in the up position to (0,0). Move the pen in the down position to (1000,1000), drawing a diagonal line. Place pen up and move it to (0,1000). (Notice that pen-up can be specified using PU as a separate command or as part of the PA syntax.) 170 OUTPUT 723; "PD;PA 1000,0;" Place pen down and move it to (1000,0), drawing a line.

Description The PA command moves the graphics pen from its current position to the position specified. A line is drawn on the analyzer display if the pen is down. Use the LINET command to vary the type of line drawn. Positions are specified as coordinates in the current units, which are set by the SCALE command, or by the DWINDOW command when a graphics window is on.

See Also CLRDSP, LINET, OR, PEN, SCALE, DWINDOW, IT, PU, PD, GRID, GRAPH, DSPLY, MK

PAUSE

Stop program operation and activate debug mode.

XPAUSE

Example

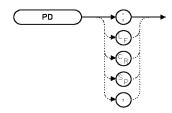
150 OUTPUT 723; "CENTERWL 750NM;"

 $Set\ center\ wavelength.$

160 OUTPUT 723; "PAUSE; "

Press CONT key on spectrum analyzer to resume program operation.

170 OUTPUT 723; "SP 100NM;"


 $Set\ span.$

Description The PAUSE command stops program operation until one of the following occurs:

- The CONT softkey is pressed.
- The (INSTR PRESET) or (I-P) key is pressed.
- DEBUG OFF is executed.
- The optical spectrum-analyzer input buffer is cleared via HP-IB. (For example, HP BASIC command CLEAR 723 clears the buffer when the optical spectrum analyzer is at HP-IB address 23, interface 7.)

PD

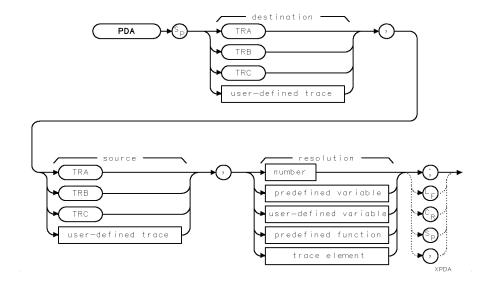
Place the graphics pen down.

ltem	Description
Preset State	Deactivated, pen up

XPD

Example

160	OUTPUT	723; "CLRDSP); ¹¹	Clear graphics from memory.
170	OUTPUT	723; "BLANK	TRA;"	Blank trace A.
180	OUTPUT	723; "ANNOT	OFF;"	$Blank\ annotation.$
190	OUTPUT	723; "PU; PA	400,400;"	Pen up. Move pen to (400,400).
200	OUTPUT	723;"PD;PA	1000,0;"	Place pen down. Draw line to (1000,0).


Description The PD command places the graphics pen in the down position enabling it to draw on the analyzer display whenever its position is changed. The pen must be placed down to draw all objects except for those referenced with item command, IT, or for characters written with the TITLE command. Place the pen down to draw the following objects. (Associated commands are in parenthesis.)

- Lines (PA, PR)
- Grids (GRID)
- Graphics marker (MK)
- Graphs (GRAPH)
- Variables (DSPLY)

See Also CLRDSP, MK, GRAPH, GRID, PA, PR, DSPLY

PDA

Analyze distribution of detected signals according to amplitude.

ltem	Description
Source or Destination Amplitude Range	0 – 10,000 measurement units for linear trace data in <i>TRA, TRB, TRC,</i> or <i>user-defined trace</i> .
	—32,768 - +32,767 measurement units for logarithmic trace data in <i>TRA, TRB, TRC,</i> or <i>user-defined trace</i> .
Resolution Range	Limited by source amplitude.
Source-Length Range	3 - 2048 position units. Default is 800 position units when using <i>TRA</i> , <i>TRB</i> , <i>TRC</i> . Truncated if longer than destination length. If shorter than destination length, last element is extended for operation.
Destination-Length Range	3 - 2048 position units.

Example Perform amplitude distribution function on trace A.

90	OUTPUT 723; "SNGLS; TS;"	Activate single-sweep mode. Clear-write trace A.
100	OPTION BASE 1	$Specify\ lower\ boundary\ of\ arrays\ to\ be\ 1.$
110 120	OUTPUT 723; "TRDEF NN, 20;" OUTPUT 723; "MOV NN, 0;"	Define user-defined trace of 20 elements, NN. Store 0 in all elements of trace array.
130	OUTPUT 723; "PDA NN, TRA, 5;"	Perform amplitude distribution function on
		$trace\ A.$
140	DIM A(20)	$Dimension\ 20$ -element computer array.
150	OUTPUT 723;"NN?;"	Query values stored in NN.
160	ENTER 723; A(*)	Store values in computer array.
170	FOR I=1 TO 20	Print values on computer display.
180	PRINT A(I)	
190	NEXT I	

Description This command replaces the destination trace with the amplitude distribution function of the source trace. The data in the source trace is processed point by point. The value of the bottom of the display is subtracted from each point, then the difference is divided by the resolution value which has been rounded to the nearest integer. If the result falls within the range of the elements of the destination trace, the content of the corresponding destination trace element is increased by one. An error results if there is not enough memory to execute PDA.

> For example, assume that the source trace is displayed on a logarithmic scale of 10 dB per division, which produces an amplitude range of 100 dB. Choosing a resolution parameter of 5 divides the displayed amplitude range of trace A (100 dB) into twenty 5-dB increments numbered 1 through 20, with increment 1 beginning at the bottom graticule line and increment 20 ending at the reference level.

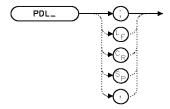
> A resolution parameter of 5 yields a function that evaluates the amplitude of each point of trace A as follows. A trace-A point that is within 5 dB of the reference level adds 1 to the 20th point of the destination trace. A trace-A point that is between 5 to 10 dB below the reference level adds 1 to the 19th point in the destination trace, and so forth. Thus, if the amplitude of the first point is 12 dB below the reference level, the amplitude of the eighteenth point of the destination trace increases by 1. Likewise, if the amplitude of the second point of the source trace is 17 dB below the reference level, the seventeenth point of the destination trace increases by 1. Note that the destination trace must be long enough, in this case, 20 points long.

If the source trace is displayed on a linear scale, a resolution parameter of 5 divides the amplitude range into 20 increments of 500 measurement units each (5% of 10,000 is 500).

The PDA function assumes the amplitude range of the source trace represents displayed trace data. If the source trace is displayed on a logarithmic scale, the amplitude range is 100 dB. If the source trace is displayed on a linear scale, the amplitude range is 10,000 measurement units. When executing the probability function on source traces other than trace A, B, or C, assume the amplitude range of the source trace is in measurement units when selecting the resolution parameter. For example, if the amplitude range is 0 to 200 and you require twenty increments (1-10, 11-20, 21-30,....), divide 200 by 20, then express the result (10, in this case) as a percentage of 10,000:

$$resolution\ parameter = \frac{100 (amplitude\ range)}{10,000 (number\ of\ increments)}$$

$$0.1 = \frac{100 (200)}{20 (10,000)}$$


The above equation yields a resolution parameter of 0.1.

PDL

Start the PDL downloadable program and loads the related commands.

NOTE

Only for use with HP 71451B Option 003, Swept Polarization Dependent Loss (PDL) Kit.

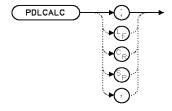
xpdl

Example

```
OUTPUT 723; "PDL_;"
                                                 Run PDL program.
100
110
120
     OUTPUT 723; "PDL_SRC?;"
                                                 Return light source status.
130
     ENTER N;
140
     IF N=O THEN
150
     OUTPUT 723; "PDLSRC;"
                                                 Turn light source on.
160
     END IF
170
180
     OUTPUT 723; "PDLINIT; "
                                                 Initialize PDL measurement.
     PRINT "Press RETURN to Continue";
200
     PAUSE;
210
     OUTPUT 723; "PDLCALC;"
                                                 Perform PDL calculation and dis-
220
                                                 play results.
230
240
     OUTPUT 723; "PDLSCALE;"
                                                 Perform auto-scale.
250
260 PLOT;
270
280
     OUTPUT 723; "PDLEXIT;"
                                                 Terminate PDL program.
290
     END;
```

Description The PDL_ command runs the swept Polarization Dependent Loss measurement procedure which requires the following steps:

- 1. Set the start and stop wavelengths.
- 2. Set the resolution bandwidth (RB) and perform an auto-scale, as needed.
- 3. Set the video bandwidth (VB) as needed.


See Also PDLINIT, PDLCALC, PDLDEV, PDL_DEV?, PDLEXIT, PDLREV, PDL_REV?, PDLSCALE, PDLSRC, PDL_SRC?

PDLCALC

Perform calculation and display polarization dependent loss.

NOTE

Only for use with HP 71451B Option 003, Swept Polarization Dependent Loss (PDL) Kit.

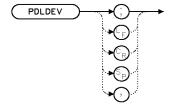
xpdlcalc

Example

OUTPUT 723; "PDLCALC;" 220

Perform PDL calculation and display results.

Description The PDLCALC command calculates the peak-to-peak polarization dependent loss and displays the result. After the calculation is performed, the measurement is stopped and the result is displayed as trace A. Trace A is the result of trace B (maximum) minus trace C (minimum).


See Also PDL_, PDLINIT, PDLDEV, PDL_DEV?, PDLEXIT, PDLREV, PDL_REV?, PDLSCALE, PDLSRC, PDL_SRC?

PDLDEV

Toggle between the internal or external detector.

NOTE

Only for use with HP 71451B Option 003, Swept Polarization Dependent Loss (PDL) Kit.

xpdldev

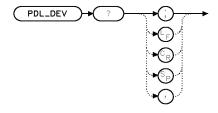
ltem	Description
Preset State	external

Example

10 OUTPUT 723; "PDLDEV;"

Toggles the receive device.

Description The PDLDEV command toggles the receive device between either the internal or an external detector thus selecting either optical-to-optical testing or optical-to-electrical testing.


See Also PDL_, PDLINIT, PDLCALC, PDL_DEV?, PDLEXIT, PDLREV, PDL_REV?, PDLSCALE, PDLSRC, PDL_SRC?

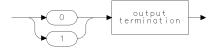
PDL_DEV?

Query the selected detector.

NOTE

Only for use with HP 71451B Option 003, Swept Polarization Dependent Loss (PDL) Kit.

xpdldevq


Example

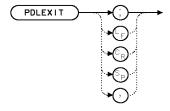
10 OUTPUT 723; "PDL_DEV?;"

Query the receive device.

Description The PDL_DEV? query returns the current status value of the receive device to be either internal (0) or external detector (1).

Query Response

qgen0


See Also PDL_, PDLINIT, PDLCALC, PDLDEV, PDLEXIT, PDLREV, PDL_REV?, PDLSCALE, PDLSRC, PDL_SRC?

PDLEXIT

Terminate PDL measurement procedure.

NOTE

Only for use with HP 71451B Option 003, Swept Polarization Dependent Loss (PDL) Kit.

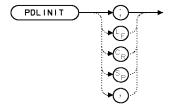
xpdlex

Example

280 OUTPUT 723; "PDLEXIT;"

Terminate PDL program.

 $\begin{array}{c} \textbf{Description} & \textbf{The PDLEXIT command terminates the polarization dependent loss (PDL)} \\ & \textbf{measurement program}. \end{array}$


See Also PDL_, PDLINIT, PDLCALC, PDLDEV, PDL_DEV?, PDLREV, PDL_REV?, PDLSCALE, PDLSRC, PDL_SRC?

PDLINIT

Initialize PDL measurement.

NOTE

Only for use with HP 71451B Option 003, Swept Polarization Dependent Loss (PDL) Kit.

xpdlin

Example

OUTPUT 723; "PDLINIT;"

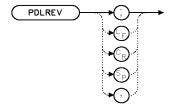
Initialize PDL measurement.

PRINT "Press RETURN to Continue";

200 PAUSE;

Description The PDLINIT command initializes the polarization dependent loss (PDL) measurement procedure. The traces are initialized to measure PDL. continuous sweep mode is activated, and the results are displayed as follows:

- Trace A contains the detected signal.
- Trace B contains the maximum signal.
- Trace C contains the minimum signal.


See Also PDL_, PDLCALC, PDLDEV, PDL_DEV?, PDLEXIT, PDLREV, PDL_REV?, PDLSCALE, PDLSRC, PDL_SRC?

PDLREV

Display PDL revision number.

NOTE

Only for use with HP 71451B Option 003, Swept Polarization Dependent Loss (PDL) Kit.

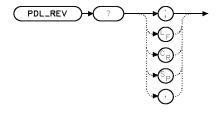
xpdlrev

Example

10 OUTPUT 723; "PDLREV;"

Display the PDL revision number.

Description The PDLREV command displays the polarization dependent loss (PDL) measurement program revision number.


See Also PDL_, PDLINIT, PDLCALC, PDLDEV, PDL_DEV?, PDLEXIT, PDL_REV?, PDLSCALE, PDLSRC, PDL_SRC?

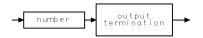
PDL_REV?

Return PDL revision number.

NOTE

Only for use with HP 71451B Option 003, Swept Polarization Dependent Loss (PDL) Kit.

xpdlrevq


Example

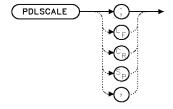
10 OUTPUT 723; "PDL_REV?;"

Return the PDL revision number.

Description The PDL_REV? query returns the polarization dependent loss (PDL) measurement program revision number.

Query Response

qgennum


See Also PDL_, PDLINIT, PDLCALC, PDLDEV, PDL_DEV?, PDLREV, PDL_REV?, PDLSCALE, PDLSRC, PDL_SRC?

PDLSCALE

Auto-scale displayed signal during PDL measurement.

NOTE

Only for use with HP 71451B Option 003, Swept Polarization Dependent Loss (PDL) Kit.

xpdlscal

Example

240 OUTPUT 723; "PDLSCALE;"

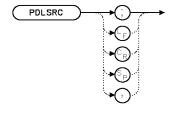
Perform auto-scale.

Description The PDLSCALE command automatically scales the displayed signal during a polarization dependent loss (PDL) measurement.

Prior to initializing the PDL measurement, the PDLSCALE command positions the peak of trace A to the reference level and selects the scaling (that is, dB/division) based upon the minimum signal level of trace A.

After the PDLINIT command is executed, the PDLSCALE command positions the peak of trace B (that is, the maximum-hold signal) to the reference level and selects the scaling based upon the minimum point in trace C (that is, the minimum-hold signal).

After the PDLCALC command is used, the PDLSCALE command positions the peak of trace A as a result of trace B minus trace C by selecting the maximum dB/division which keeps the maximum signal below the top graticule.


See Also PDL_, PDLINIT, PDLCALC, PDLDEV, PDL_DEV?, PDLEXIT, PDLREV, PDL_REV?, PDL_SRC?

PDLSRC

Toggle the light source on and off.

NOTE

Only for use with HP 71451B Option 003, Swept Polarization Dependent Loss (PDL) Kit. This also requires Option 002 built-in white light source.

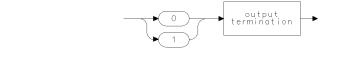
Item Description
Preset State on

Example

120 OUTPUT 723; "PDL_SRC?;" Return light source status.

130 ENTER N;

140 IF N=0 THEN


150 OUTPUT 723; "PDLSRC;" Turn light source on, if light source is off.

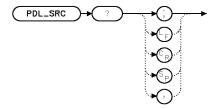
160 END IF

 $Description \ \ \mbox{The PDLSRC command toggles the internal white light source on and off.}$

xpdlsrc

Query Response

qgen0 .


See Also PDL_, PDLINIT, PDLCALC, PDLDEV, PDL_DEV?, PDLEXIT, PDLREV, PDL_REV?, PDLSCALE, PDL_SRC?

PDL_SRC?

Return light source status.

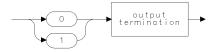
NOTE

Only for use with HP 71451B Option 003, Swept Polarization Dependent Loss (PDL) Kit.

xpdlsrcq

Example

- OUTPUT 723; "PDL_SRC?;" 120
- 130 ENTER N;
- IF N=O THEN 150 OUTPUT 723; "PDLSRC;"
- 160 END IF


140

Return light source status.

Turn light source on, if light source is off.

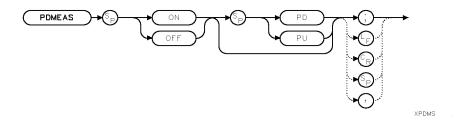
Description The PDL_SRC? query returns the light source status, where 0 indicates off and 1 indicates on.

Query Response

qgen0

See Also PDL_, PDLINIT, PDLCALC, PDLDEV, PDL_DEV?, PDLEXIT, PDLREV, PDL_REV?, PDLSCALE, PDLSRC

PDMEAS


Measure the flatness of a photodiode under test.

NOTE

This command is only available for systems using the HP 70951A module.

Before the command is executed, perform the following steps:

- 1. Connect the front-panel MONOCHROMATOR OUTPUT to the PHOTODETECTOR INPUT with a fiber-optic cable.
- 2. Press STORE THRU -> B.
- 3. Connect the fiber-optic cable to the photodiode under test which is connected to TRANS-Z IN on the rear panel.

ltem	Description
Requirement	HP 70951A module
Preset State	OFF

Example

100 CLEAR 723

Initialize analyzer.

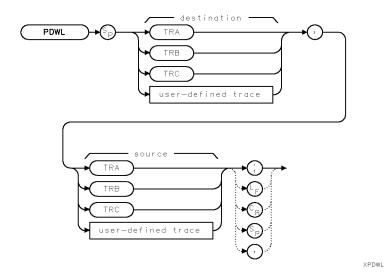
Initiate photodiode flatness measurement.

- 110 OUTPUT 723; "IP;"
- 120 PRINT "STORE REFERENCE TRACE"
- 130 OUTPUT 723; "STORREF THRU;"
- 140 PRINT "HIT RETURN TO CONTINUE"
- 150 PAUSE
- OUTPUT 723; "PDMEAS ON;"

Description The PDMEAS command is used to measure the flatness of an external photodiode. The diode-flatness correction factors are not included in the flatness correction.

> When the PDMEAS ON parameter is used, the following conditions are satisfied:

- Trace A B is turned on.
- Internal, optical switch is set to external.
- Diode flatness correction factors are turned off.
- External diode is selected.
- IN and OUT indicator LEDs are turned on.
- DET IN indicator LED is turned off.


When the PDMEAS OFF parameter is USED, the following conditions are satisfied:

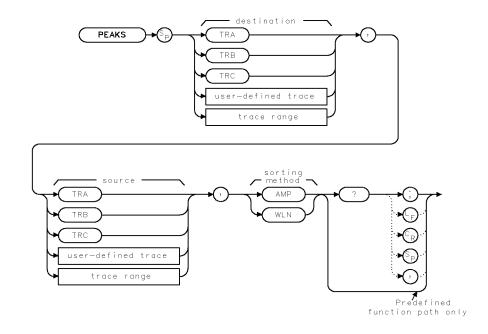
- Trace A B is turned off.
- Internal, optical switch is set to external.
- Diode flatness correction factors are turned on.
- Internal diode is selected.
- IN and OUT indicator LEDs are turned on.
- DET IN indicator LED is turned on.

See Also INSTMODE, STORREF

PDWL

Analyze distribution of detected signals according to wavelength.

ltem	Description
Source or Destination Amplitude Range	0 - 10,000 measurement units for linear trace data in <i>TRA, TRB, TRC, trace range</i> , or <i>user-defined trace</i> 32,768 - +32,767 measurement units for logarithmic trace data in <i>TRA, TRB, TRC, trace range</i> , or <i>user-defined trace</i> .
Source-Wavelength Range	Hardware dependent
Source-Length Range	3 - 2048 position units. Default is 800 position units when using <i>TRA</i> , <i>TRB</i> , <i>TRC</i> . Truncated if longer than destination length. If shorter than destination length, last element is extended for operation.
Destination-Length Range	3 - 2048 position units.


DIM A(20) Dimension 20-element computer arrays to be 1. Dimension 20-element computer arrays. Assign address 723 to @Sa. Define 20-element user-defined trace, B_IN. Define 20-element user-defined trace, P_WL. Store zero in all points of P_WL. Define 20-element user-defined trace, P_WL. Store zero in all points of P_WL. Set measurement range. Activate single-sweep mode. Set threshold to -60 dBm. Sweep trace A once. DUTPUT @Sa; "SNGLS; TH -60DBM; TS;" Activate single-sweep mode. Set threshold to -60 dBm. Sweep trace A once. Compress contents of trace A and store results in B_IN. If the amplitude of a point in B_IN exceeds the threshold, store a "1" in the corresponding point in P_WL. DUTPUT @Sa; "TDF M;" Format trace-output data in measurement units. Query values stored in P_WL to computer. ENTER @Sa; A(*)	Example	100	CLEAR 723	Initialize analyzer.
puter arrays to be I. 130 DIM A(20) Dimension 20-element computer array. Assign address 723 to @Sa. 150 OUTPUT @Sa; "TRDEF B_IN,20; MOV B_IN,0;" Define 20-element user-defined trace, B_IN. 160 OUTPUT @Sa; "CENTERWL 750NM; SP 100NM;" 170 OUTPUT @Sa; "CENTERWL 750NM; SP 100NM;" 180 OUTPUT @Sa; "SNGLS; TH -60DBM; TS;" Activate single-sweep mode. Set threshold to -60 dBm. Sweep trace A once. 190 OUTPUT @Sa; "COMPRESS B_IN,TRA,POS;" Compress contents of trace A and store results in B_IN. 200 OUTPUT @Sa; "PDWL,P_WL,B_IN;" If the amplitude of a point in B_IN exceeds the threshold, store a "1" in the corresponding point in P_WL. 210 OUTPUT @Sa; "TDF M;" Compress contents of corresponding point in P_WL. 220 OUTPUT @Sa; "TDF M;" Query values stored in P_WL to computer. 230 ENTER @Sa; A(*)		110	OUTPUT 723; "IP;"	
Dimension 20-element computer array. ASSIGN @Sa TO 723 Assign address 723 to @Sa. Define 20-element user-defined trace, B.IN. Define 20-element user-defined trace, P.WL. Store zero in all points of P.WL. OUTPUT @Sa; "CENTERWL 750NM;SP 100NM;" Set measurement range. Activate single-sweep mode. Set threshold to -60 dBm. Sweep trace A once. OUTPUT @Sa; "COMPRESS B_IN,TRA,POS;" Compress contents of trace A and store results in B.IN. OUTPUT @Sa; "PDWL,P_WL,B_IN;" If the amplitude of a point in B_IN exceeds the threshold, store a "1" in the corresponding point in P_WL. OUTPUT @Sa; "TDF M;" Computer Store values in computer array.		120	UPTION BASE 1	2 00
array. Assign address 723 to @Sa. 150 OUTPUT @Sa; "TRDEF B_IN,20; MOV B_IN,0;" Define 20-element user-defined trace, B_IN. Define 20-element user-defined trace, P_WL. Store zero in all points of P_WL. Set measurement range. Activate single-sweep mode. Set threshold to -60 dBm. Sweep trace A once. 190 OUTPUT @Sa; "COMPRESS B_IN, TRA, POS;" Compress contents of trace A and store results in B_IN. If the amplitude of a point in B_INexeeds the threshold, store a "1" in the corresponding point in P_WL. 210 OUTPUT @Sa; "TDF M;" Format trace-output data in measurement units. 220 OUTPUT @Sa; "P_WL?;" Query values stored in P_WL to computer. 230 ENTER @Sa; A(*)				-
150 OUTPUT @Sa; "TRDEF B_IN, 20; MOV B_IN, 0;" 160 OUTPUT @Sa; "TRDEF P_WL, 20; MOV P_WL, 0;" 160 OUTPUT @Sa; "TRDEF P_WL, 20; MOV P_WL, 0;" 170 OUTPUT @Sa; "CENTERWL 750NM; SP 100NM;" 180 OUTPUT @Sa; "SNGLS; TH -60DBM; TS;" 180 OUTPUT @Sa; "SNGLS; TH -60DBM; TS;" 190 OUTPUT @Sa; "COMPRESS B_IN, TRA, POS;" 190 OUTPUT @Sa; "COMPRESS B_IN, TRA, POS;" 190 OUTPUT @Sa; "PDWL, P_WL, B_IN;" 190 OUTPUT @Sa; "PDWL, P_WL, B_IN;" 190 OUTPUT @Sa; "PDWL, P_WL, B_IN;" 200 OUTPUT @Sa; "PDWL, P_WL, B_IN;" 200 OUTPUT @Sa; "TDF M;" 200 O		130	DIM A(20)	
trace, B_IN. 160 OUTPUT @Sa; "TRDEF P_WL, 20; MOV P_WL, 0;" Define 20-element user-defined trace, P_WL. Store zero in all points of P_WL. 170 OUTPUT @Sa; "CENTERWL 750NM; SP 100NM;" 180 OUTPUT @Sa; "SNGLS; TH -60DBM; TS;" Activate single-sweep mode. Set threshold to -60 dBm. Sweep trace A once. 190 OUTPUT @Sa; "COMPRESS B_IN, TRA, POS;" Compress contents of trace A and store results in B_IN. 200 OUTPUT @Sa; "PDWL, P_WL, B_IN;" If the amplitude of a point in B_IN exceeds the threshold, store a "1" in the corresponding point in P_WL. 210 OUTPUT @Sa; "TDF M;" Format trace-output data in measurement units. 220 OUTPUT @Sa; "P_WL?;" Query values stored in P_WL to computer. 230 ENTER @Sa; A(*)		140	ASSIGN @Sa TO 723	Assign address 723 to @ Sa .
trace, PWL . Store zero in all points of PWL . 170 OUTPUT QSa; "CENTERWL 750NM; SP 100NM;" Set measurement range. Activate single-sweep mode. Set threshold to $-60 \ dBm$. Sweep trace A once. 190 OUTPUT QSa; "COMPRESS B_IN,TRA,POS;" Compress contents of trace A and store results in BIN . 200 OUTPUT QSa; "PDWL,P_WL,B_IN;" If the amplitude of a point in BIN exceeds the threshold, store a "1" in the corresponding point in PWL . 210 OUTPUT QSa; "TDF M;" Format trace-output data in measurement units. 220 OUTPUT QSa; "P_WL?;" Query values stored in PWL to computer. 230 ENTER QSa; $A(*)$		150	OUTPUT @Sa;"TRDEF B_IN,20;MOV B_IN,0;"	· ·
180 OUTPUT @Sa; "SNGLS; TH -60DBM; TS;" Activate single-sweep mode. Set threshold to -60 dBm. Sweep trace A once. 190 OUTPUT @Sa; "COMPRESS B_IN, TRA, POS;" Compress contents of trace A and store results in B_IN. 200 OUTPUT @Sa; "PDWL, P_WL, B_IN;" If the amplitude of a point in B_IN exceeds the threshold, store a "1" in the corresponding point in P_WL. 210 OUTPUT @Sa; "TDF M;" Format trace-output data in measurement units. 220 OUTPUT @Sa; "P_WL?;" Query values stored in P_WL to computer. 230 ENTER @Sa; A(*) Store values in computer array.		160	OUTPUT @Sa;"TRDEF P_WL,20;MOV P_WL,0;"	trace, P_WL. Store zero in all
threshold to -60 dBm. Sweep trace A once. 190 OUTPUT @Sa; "COMPRESS B_IN,TRA,POS;" Compress contents of trace A and store results in B_IN. 200 OUTPUT @Sa; "PDWL,P_WL,B_IN;" If the amplitude of a point in B_IN exceeds the threshold, store a "1" in the corresponding point in P_WL. 210 OUTPUT @Sa; "TDF M;" Format trace-output data in measurement units. 220 OUTPUT @Sa; "P_WL?;" Query values stored in P_WL to computer. 230 ENTER @Sa; A(*) Store values in computer array.		170	OUTPUT @Sa; "CENTERWL 750NM; SP 100NM; "	Set measurement range.
and store results in B_IN. 200 OUTPUT @Sa; "PDWL,P_WL,B_IN;" If the amplitude of a point in B_IN exceeds the threshold, store a "1" in the corresponding point in P_WL. 210 OUTPUT @Sa; "TDF M;" Format trace-output data in measurement units. 220 OUTPUT @Sa; "P_WL?;" Query values stored in P_WL to computer. 230 ENTER @Sa; A(*) Store values in computer array.		180	OUTPUT @Sa; "SNGLS; TH -60DBM; TS;"	threshold to -60 dBm. Sweep
B_INexceeds the threshold, store a "1" in the corresponding point in P_WL. 210 OUTPUT @Sa; "TDF M;" Format trace-output data in mea- surement units. 220 OUTPUT @Sa; "P_WL?;" Query values stored in P_WL to computer. 230 ENTER @Sa; A(*) Store values in computer array.		190	OUTPUT @Sa; "COMPRESS B_IN, TRA, POS;"	-
surement units. 220 OUTPUT @Sa; "P_WL?;" Query values stored in P_WL to computer. 230 ENTER @Sa; A(*) Store values in computer array.		200	OUTPUT @Sa;"PDWL,P_WL,B_IN;"	B_IN exceeds the threshold, store a "1" in the corresponding point
computer. 230 ENTER @Sa; A(*) Store values in computer array.		210	OUTPUT @Sa; "TDF M;"	
, , ,		220	OUTPUT @Sa; "P_WL?;"	
		230	ENTER @Sa; A(*)	Store values in computer array.
240 FOR I=1 TO 20 Print values (0 or 1).		240	FOR I=1 TO 20	Print values (0 or 1).
250 PRINT A(I)		250	PRINT A(I)	
260 NEXT I		260	NEXT I	

Description The PDWL command augments the destination trace with the wavelength-distribution function of the source trace. Elements in the source trace that are above the threshold value cause corresponding elements in the destination trace to be increased in amplitude by one measurement unit. Use the threshold command, TH, to change the threshold value. Otherwise, its default value is nine major divisions below the reference level.

See Also TH

PEAKS

Sort detected signals from lowest wavelength to highest wavelength, or from lowest amplitude to highest amplitude.

ltem	Description
Source or Destination Amplitude Range	0 - 10,000 measurement units for linear trace data in <i>TRA, TRB, TRC, trace range</i> , or <i>user-defined trace</i> .
	—32,768 - +32,767 measurement units for logarithmic trace data in <i>TRA, TRB, TRC, trace range</i> , or <i>user-defined trace</i> .
Source-Length Range	3 - 2048 position units. Default is 800 position units when using <i>TRA</i> , <i>TRB</i> , <i>TRC</i> . Truncated if longer than destination length. If shorter than destination length, last element is extended for operation.
Destination-Length Range	3 - 2048 position units.

XPEAKS

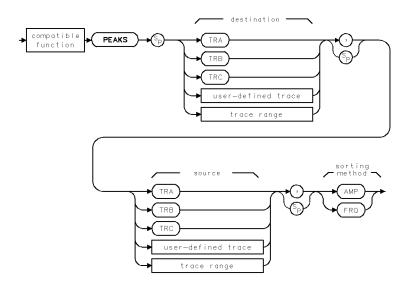
Example	60	OUTPUT 723;"VARDEF WL1,0;"	Define user-defined variable,
	70	OUTPUT 723; "CENTERWL 1000NM; SP 300NM; TS;"	WL1, equal to 0. Set the measurement range. Sweep trace A.
	80	OUTPUT 723;"TH -65DBM;MKPX 10DB;TS;"	Set the threshold to – 65 dBm. Set marker-peak excursion to 10 dB. Sweep trace A.
	90	OUTPUT 723; "PEAKS TRB, TRA, WLN?;"	Sort signals by wavelength and place results in trace B. Trace B now contains position information. Query number of peaks to computer.
	100	ENTER 723; A	Assign number of peaks to computer variable, A.
	110	PRINT "SIGNALS ABOVE -65 DBM:"; A	Print number of peaks.
	120	OUTPUT 723;"MOV WL1,WLUNITS TRB[2],TRA;"	Move wavelength of second element in trace B to WL1.
	130	OUTPUT 723;"WL1?;"	Query value of WL1.
	140	ENTER 723; W	$Assign\ value\ to\ computer\ variable.$
	150	PRINT "THE WAVELENGTH OF POINT 2 IS ";W	

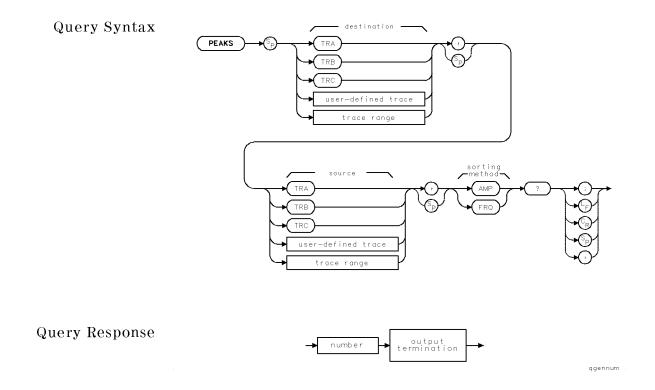
Description The PEAKS command sorts signal peaks by wavelength or amplitude, stores in the destination trace the horizontal position of each peak in position units, then computes the number of peaks found.

> When sorting by wavelength, PEAKS first computes the horizontal position of all peaks. These positions are consecutively loaded into the destination trace, the lowest value occupying the first element. Thus, the destination trace from left to right corresponds to signal wavelengths from low to high.

When sorting by amplitude. PEAKS first computes the amplitudes of all peaks in the source trace in measurement units, and sorts these values from high to low. The horizontal positions of the peaks are then loaded into the destination trace, with the horizontal position of the highest value occupying the first element. Thus, the destination trace amplitude, from left to right, is proportional to signal amplitudes from high to low.

The destination trace values range from 1 to the length of the source trace. If necessary, the last sorted value is repeated to fill the remaining elements of the destination trace.

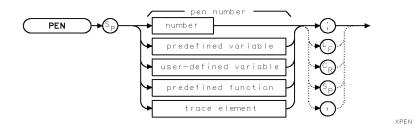

PEAKS uses the current value set by the marker-peak-excursion command, MKPX, as the criterion for determining peaks,


PEAKS

PEAKS must be used as either a query or as a source in another analyzer-command function. Form a query by ending the PEAKS statement with a question mark (?). When used as a query, PEAKS queries the number of peaks found.

Use PEAKS as a source by incorporating the PEAKS statement into any spectrum-analyzer command having *predefined function* in its syntax diagram. When PEAKS is used as a source, the number of peaks found is used for operation by the command that contains PEAKS.

Predefined-Function Syntax



See Also MKPX

PEN

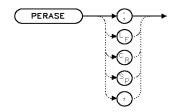
Choose pen for plotting on plotter.

ltem	Description
Pen-Number Range	0 - 255, depending on display model
Preset State	PEN O

Example	150 160		723; "CLRDSP;" 723; "TRDSP TRA, OFF;"	Clear user graphics. Remove trace A from display.
	170	OUTPUT	723; "GRAT OFF;"	Turn off graticule.
	180	OUTPUT	723; "ANNOT OFF;"	$Turn\ off\ annotation.$
	190	OUTPUT	723; "IT 1; VW OFF; "	Define item 1 while it is off (blanked).
	200	OUTPUT	723;"TEXT\$Item 1\$;"	Assign text to item 1.
	210	OUTPUT	723; "IT 1; OR 300, 700;"	Move item 1 to (300,700).
	220	OUTPUT	723; "PEN 1;"	Assign pen color to item 1.
	230	OUTPUT	723; "VW ON;"	Display item 1.

Description The PEN command specifies the color of objects plotted or displayed on devices having color capability.

Default Color Assignments for HP 70004A Display


Pen Number	Default Color ¹	Display Assignment	
1	gray	GRATICULE	
2	yello w	TRACE A	
3	light blue	TRACE B	
4	light red	TRACE C	
5	green	LINES	
6	bright white	TITLES	
7	gray	AN NOTATIO N	
8	orange ADVISE text		
9	red ERRORS		
10	bright white MARKERS		
11	white	softKEY LABELS	
12	white		
13	red		
14	green		
15	blue		
16	black BACKGROUND		

1 Color can be adjusted using (DISPLAY) menus.

See Also CLRDSP, LINET

PERASE

Partially erase internal memory and analyzer settings.

XPERAS

Description The PERASE command erases all unprotected memory that resides in the spectrum analyzer. PERASE erases internal memory, which contains user-defined variables, traces, functions, on-end-of-sweep algorithms, amplitude-correction factors (AMPCOR), and files. (Refer to the following tables for a complete listing.) PERASE also sets all instrument settings and their associated predefined variables to their preset values, which are all stored in reserved memory.

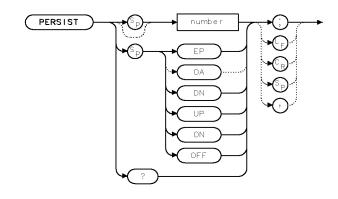
> PERASE does not erase information stored in external memory located on HP-IB or HP-MSIB devices, such as a disk drive or a memory card. PERASE does not erase the serial number, the correction-factor values, (USER) keys, or limit-line table parameters from reserved memory.

Various portions of different memories can be erased or protected against erasure with the commands summarized in the following two tables.

Commands	that Erase	Reserved	Memory
----------	------------	----------	--------

Memory Components	Commands t	hat Erase or Re	set Memory
	PERASE	ERASE	IP
(USER) keys (KEYDEF)		Χ	
limit-line table (LIMILINE)		Χ	
serial numbers		Χ	
active trace data (trace A, B, or C)	Χ	Χ	Χ
instrument settings not stored in state registers	Χ	Χ	Χ

Commands that Erase or Protect User Memory


Memory Components	Commands that Erase or Reset Memory			Commands that Protect Memory	
	PURGE	DIS POS E*	NS TATE	PROTECT†	PSTATE
			INO IAI E	FNUIEGI	LOTATE
	FORMAT	PERASE*			
		ERASE*			
user-defined variable	Χ	X		χ	
user-defined trace	Χ	Х		Х	
user-defined function	Χ	Х		Х	
active user-defined function	Χ	Х		Х	
on-end-of-sweep-algorithm	Χ	Х		Х	
trace-amplitude correction factors	Χ	Х		Х	
state register file (instrument settings	Χ	Х	Χ	Х	Х
and title line)					
program file	Χ	Х		Х	
trace file	Χ	Х		Х	
$(\overline{ ext{USER}})$ keys file	Χ	Х		Х	
Limit line file	Χ	Х		Χ	

^{*} Indicates command erases internal memory only.

[†] Indicates command that protects internal memory only.

PERSIST

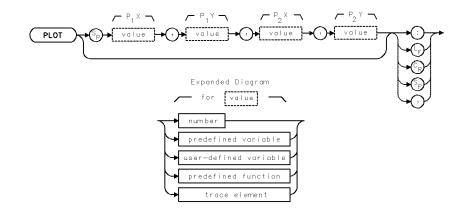
Set the number of previous traces to be simultaneously displayed onscreen.

Description ltem OFF, 16 traces Preset State Range 1 - 50

Description The PERSIST command sets the number of previous traces to be simultaneously displayed onscreen. Range may be limited by available display memory. To increase the number of traces that can be displayed, reduce the number of trace points in each trace.

> Overlapping points are brightened. The color map of the display is changed to a monochrome green scale.

Query Response



qgennum

xpersis .

PLOT

Plot the display screen.

ltem	Description
P_1 X, P_1 Y, P_2 X, and P_2 Y Range	Depends on plotting device.

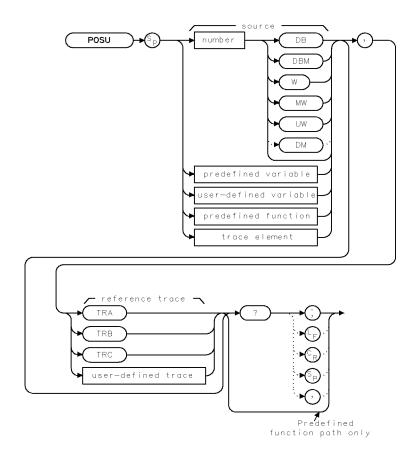
Example of plot 0,0,700,500; wait 180s;

plotting DLP The first line of the above example initiates a printer-generated copy of the contents. screen currently displayed. The second line places a 3-minute wait on the DLP while the plot completes.

Example The following example initiates a plotter-generated copy of the screen currently displayed. The plot occurs via external (remote) control.

```
10
       Hpib=7
                                                          Dump\ DEVICE = HP-IB\ PLOTTER.
20
       Dsplay=4
30
       Dsp=Hpib*100+Dsplay
40
       Sa=Hpib*100+23
50
       Plt=5
60
70
       OUTPUT Dsp; "PI 1,0,"&VAL$(Plt)&",0;"
80
                                                          HP-IB address is 5.
90
       Dummy=SPOLL(Dsp)
                                                          Clear status register.
100
                                                          Allow all errors, SRQ when done.
110
       OUTPUT Dsp; "IM 255,16,0;"
```

```
120
       ON INTR Hpib GOTO Done
                                                         When finished, GO TO ...
130
       ENABLE INTR Hpib; 2
                                                         Interrupt when finished.
140
                                                         Dump plot.
150
       OUTPUT Dsp; "CY 1;";
160
                                                         No CR/LF.
       SEND Hpib; UNL LISTEN Plt TALK Dsplay DATA
170
                                                         Get controller off HP-IB.
180
                                                         Do not use "LOCAL 7".
190
     Loop:GOTO Loop
                                                         Wait for completion.
200
210
     Done: !
       OFF INTR
220
       Status_byte=SPOLL(Dsp)
230
                                                         Read display status.
240
       IF BIT(Status_byte,4) THEN
                                                         Bit 4 is command done.
          DISP "DONE!"
250
260
       ELSE
270
          DISP "UNEXPECTED INTERRUPT"
280
       END IF
290
300
       END
```


Description The PLOT command generates a copy of the spectrum-analyzer display on paper with a plotter or printer.

The plotter or printer must be properly configured prior to issuing PLOT. P_1X and P_1Y , and P_2X and P_2Y specify the lower-left and upper-right corners of the plot, respectively. If the P_1X , P_1Y , P_2X , and P_2Y parameters are omitted, the parameters stored in the display module are used.

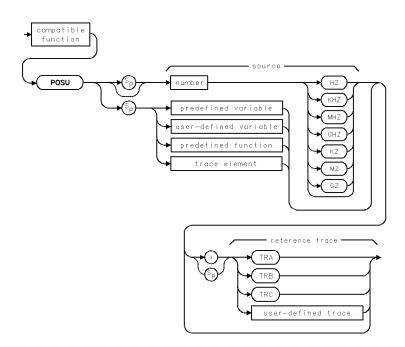
The instrument addressed with the PLOT command also must be assigned to the display keyboard. The PLOT command instructs the display to do a graphics plot dump. Execution of the plot command is not complete until the plotter has finished plotting.

POSU

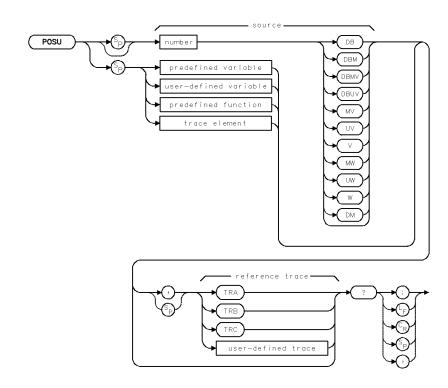
Convert wavelength or time units to position units.

. xposuw .

ltem	Description
Source Amplitude Range	0 – 10,000 measurement units for linear trace data in <i>TRA, TRB, TRC, trace range</i> , or <i>user-defined trace</i> .
	—32,768 - +32,767 measurement units for logarithmic trace data in <i>TRA, TRB, TRC, trace range</i> , or <i>user-defined trace</i> .
	\pm 1.8 $ imes$ 10 308 when using <i>number, predefined variable,</i> or user-defined variable.
Source Length Range	3 - 2048 position units. Default is 800 position units when using TRA , TRB , TRC . Truncated if longer than destination length. If shorter than destination length, last element is extended for operation.
Reference-Trace-Amplitude Range	0 – 10,000 measurement units for linear trace data in <i>TRA, TRB, TRC,</i> or <i>user-defined trace</i> . —32,768 – +32,767 measurement units for logarithmic trace data in <i>TRA, TRB, TRC,</i> or <i>user-defined trace</i> .
Reference-Trace-Length Range	3 - 2048 position units. Default is 800 position units when using <i>TRA, TRB, TRC</i> .


Example

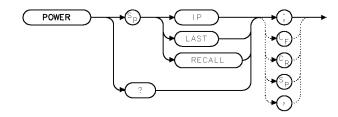
160	OUTPUT 723; "CLRDSP;"	Clear user graphics from memory.
170	OUTPUT 723; "SCALE 0,800,-11003,502;"	Define the units for scale. Set the minimum and maximum values for the X axis to 0 and 800, and the Y axis to -11003 and 502.
180	OUTPUT 723;"TRDSP TRA,OFF;"	$Turn\ off\ trace\ A.$
190	OUTPUT 723; "PU; PA 0, MEASU -37DBM, TRA;"	Lift up pen. Move pen to edge of the graticule at -37 dBm .
200	OUTPUT 723; "PD; PA POSU 800NM, TRA, MEASU -62DBM, TRA;"	Place pen down. Draw to the point at 800 nm and -62 dBm.
210	OUTPUT 723; "PU; PA 0, MEASU -25DBM, TRA;"	Place pen up. Move it to the left edge of the graticule.
220	OUTPUT 723;"PD;PA 800,MEASU -30DBM,TRA;"	Draw a line to the right edge of the graticule, ending at -30 dBm .


Description The POSU command converts wavelength or time values to position-unit values. Position units describe the position of a point along the horizontal axis of a trace. The point at the left end of the trace has a position-unit value of 1. The point at the right end of an 800-point trace has a position-unit value of 800. POSU must be used as either a query or as a source in another analyzer-command function. Form a query by ending the POSU statement with a question mark (?). When used as a query, POSU gives the position-unit value of the source. Use POSU as a source by incorporating the POSU statement into any spectrum-analyzer command containing

predefined function in its syntax diagram. When POSU is used as a source, the position-unit value of the source is used for operation by the command that contains POSU. POSU converts the wavelength of the reference-trace element to position units when the trace is displayed in wavelength spans greater than zero. For spans equal to zero, POSU converts the sweep-time position of the trace element to position units. If the reference trace is not specified, the last active trace is assumed to be the reference trace.

Predefined-Function Syntax

Query Syntax


Query Response

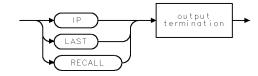
qgennum

POWERON

Specify the analyzer's state at power-up.

xpower .

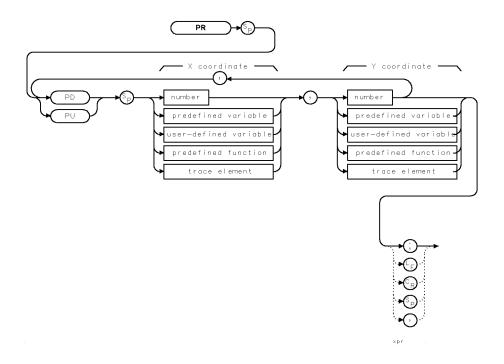
Example


120 OUTPUT 723; "POWERON LAST;"

Recall at power-up the state the analyzer was in when power was removed.

Description The POWERON command specifies the state the analyzer will be in when power is applied.

Argument	Definition
IP	Places the analyzer in its preset state when power is applied.
LAST	Recalls at power-up the state the analyzer was in when power was removed (the exception is that the mass-storage device is set to internal memory).
RECALL	Recalls state 0 at power-up. If state 0 has not been saved, and so does not exist, warning message 16006 is displayed when POWERON RECALL is executed.


Query Response

qpower

PR

Move pen relative to current position.

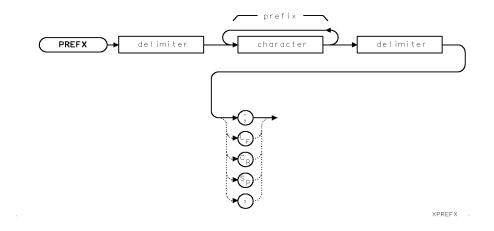
ltem	Description	
X-Coordinate Range	Determined by SCALE or DWINDOW	
Y-Coordinate Range	Determined by SCALE or DWINDOW	

${\bf Example} \ \ {\bf Draw} \ a \ {\bf line} \ on \ the \ analyzer \ display.$

110 OUTPUT 723; "CLRDSP;"
120 OUTPUT 723; "PD; PR 800,600,-500,100;"

Clear graphics from memory.

Place pen down. Move pen 800
units to the right and 600 units
up from its current position, then
move pen 500 units to the left, and
100 units up.


Description The PR command moves the graphics pen relative to its current position.

A line is drawn on the analyzer display if the pen is down. Positions are specified as coordinates in scale units, which are set by the SCALE command or by the DWINDOW command if a graphics window is on.

See Also LINET, OR, PEN, SCALE, DWINDOW, IT, PU, PD, GRID, MK, GRAPH

PREFX

Change the file prefix that identifies user-memory entries.

ltem	Description
Prefix Range	0 - 8 characters
Requirements	If executed, it must precede store and save commands, such as:
	LIMISAVE, SAVED,
	SAVES, SAVET,
	SAVEU, STOR

Example

110 OUTPUT 723; "PREFX;"

Description The PREFX command changes the prefix letter appended to file numbers when the SAVED, SAVES, SAVET, and SAVEU commands (or corresponding keys) are used to store data in user memory. The following table shows the default prefixes.

Userl	Vlemo	ry Co	ntents
-------	-------	-------	--------

Article Stored	Storing Command	File Prefix for Entry in User-Memory Catalog
file containing user-key menu	SAVEU	u_
file containing trace	SAVET	t_
file containing user-defined variable*	SAVED	d
file containing user-defined function*	SAVED	d_
file containing on-end-of-sweep algorithm*	SAVED	d_
file containing limit line	LIMISAV	l_
file containing state register instrument settings and title-line	SAVES	S_
* Cannot be stored in internal memory.		

For example, executing the SAVEU command as shown below:

SAVEU 10

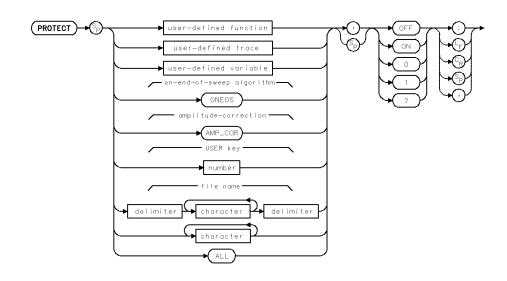
stores a file in user memory with " u_- " as the prefix and "10" is the file number. The file is listed in the user-memory catalog as:

u_10

Executing the PREFX command as shown below:

PREFX \$MARCH\$; SAVEU 10;

changes the prefix and inserts the prefix between the "u" and the " $_$ " as shown below:


uMARCH_10

The recall and load commands (RCLD, RCLT, RCLS, LIMIRCL, RCLU, and LOAD) require the complete file name, which includes both the prefix and the file number. To verify file names, press <code>State</code>, <code>recall</code>, <code>catalog & MSI</code> to view the catalog of user memory, which is the currently selected storage device.

See Also RCLD, RCLS, RCLT, RCLU, LOAD, DISPOSE, FORMAT, ERASE, PERASE

PROTECT

Prevent disposal or redefinition of internal memory.

ltem	Description	
Range	For user-defined trace, user-defined function, or user-defined variable, range is $1-12$ characters: $A-Z$, $0-9$, and underscore $ \bot $. First character must be a letter. Numbers must be preceded by underscore.	
	For <i>number</i> , range is integers, 1 - 14.	
Delimiters	Required before and after <i>file name</i> when it contains a number or lower-case letters. When <i>file name</i> is upper-case alpha characters only, delimiters are optional.	

Example

10 OUTPUT 723; "PROTECT DLP, ON;"

Protect a stored user-defined function called DLP.

Description The PROTECT command prevents the disposal or redefinition of allocated internal memory.

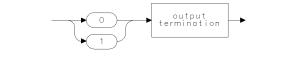
> PROTECT ALL protects the entire contents of internal memory against erasure or overwriting by the following commands.

- ACTDEF (active user-defined function)
- AMPCOR (amplitude correction factors)

- DISPOSE (Erases articles in this list.)
- FORMAT
- FUNCDEF (user-defined functions)
- KEYDEF (user-defined key)
- LIMILINE (user-defined traces, LIMIT_HI and LIMIT_LO)
- LIMISAV (limit-line files)
- LOAD (Load files and articles into internal memory.)
- ONEOS (on-end-of-sweep algorithm)
- PERASE (partial erase)
- SAVES (state-register file)
- SAVEU ((USER) keys file)
- SAVET (trace file)
- STOR (Store any file.)
- TRDEF (user-defined trace)

NOTE

PROTECT does not prevent erasure by the ERASE or PURGE command

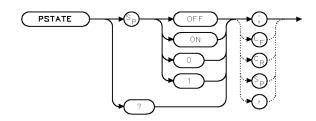

To selectively protect an article, specify the article name or number, as indicated in the syntax diagram. To discontinue protection, execute PROTECT OFF. The following table summarizes commands that protect or alter the different memories available, including internal memory.

Commands that Erase or Protect User Memory

Memory Components	Commands that Erase or Reset Memory			Commands that Protect Memory	
	PURGE	DISPOSE*	NSTATE	PROTECT†	
	FORMAT	PERASE*			
		ERASE*			
user-defined variable	χ	Χ		Χ	
VARDEF, LOAD					
user-defined trace	Χ	Х		Χ	
TRDEF, LIMILINE					
user-defined function	Х	Х		Χ	
FUNCDEF, LOAD					
active user-defined function	Х	Χ		Χ	
ACTDEF, LOAD					
on-end-of-sweep-algorithm	Х	Х		Χ	
ONEOS, LOAD					
trace-amplitude correction	Χ	Х		Χ	
factors AMPCOR					
state register file	Х	Х	Х	Χ	Χ
instrument settings					
and title line,					
SAVES, STOR	İ		l I		ļ Ī
program file	Х	Х		Х	
SAVED, STOR					
trace file	Х	Х		Х	
SAVET, STOR					
(USER) keys file	Х	Х		Х	
SAVEU, STOR					
Limit line file	Х	Х		Х	
LIMISAV, STOR					

^{*} indicates command erases internal memory only. †indicates command that protects internal memory only.

Query Response PROTECT ALL? gives a 1 if any part of internal memory is protected. If all of internal memory is unprotected, PROTECT ALL? gives a 0.



qgen0

See Also ACTDEF, AMPCOR, DISPOSE, FUNCDEF, LIMISAV, LOAD, ONEOS, PERASE, SAVES, SAVET, SAVEU, STOR, VARDEF

PSTATE

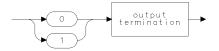
Protect state-register files stored in user memory.

XPSTAT

\mathbf{E}	xa	m	\mathbf{p}	le

- 20 OUTPUT 723; "MSI MSIB; "
- 30 OUTPUT 723; "PSTATE OFF;"
- OUTPUT 723; "NSTATE 3;"
 - ment states.
 - OUTPUT 723; "PSTATE ON;"

Turn on state-register protection.

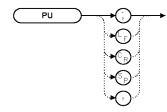

Turn of state-register protection.

Select memory card on HP 70004A Display.

Make 3 state registers available for storing instru-

Description The PSTATE command protects the contents of the state-register files from accidental erasure or over-writing by NSTATE, LOAD, STOR, or SAVES command. PSTATE does not prevent erasure of register contents with the ERASE, FORMAT, PERASE, or PURGE command.

Query Response


aaen0

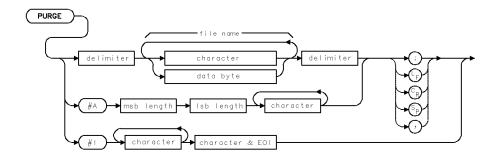
See Also LOAD, NSTATE, PROTECT, SAVES, STOR

XPU

PU

Lift pen up.

Item	Description	
Preset State	Active. Pen is up.	


Example	130	OUTPUT 723; "CLRDSP;"	$Clear\ graphics\ from\ memory.$
P	140	OUTPUT 723; "PU; PA 500, 500;"	Lift pen. Move pen to (500,500).
	150	OUTPUT 723; "PD; PA 1000, 1000;"	Place pen down. Draw line to upper-right
			corner:
	160	OUTPUT 723; "PA PU 0,1000;"	${\it Move pen to upper-left corner with pen in the}$
			up position. (See syntax diagram for PA.)
	170	OUTPUT 723; "PD; PA 1000, 0; "	$Place\ pen\ down\ and\ draw\ line\ to\ lower-right$
			corner.

Description The PU command "lifts up" the graphics pen from the analyzer display. Use PU to move the pen position with the PA and PR commands without drawing on the analyzer display.

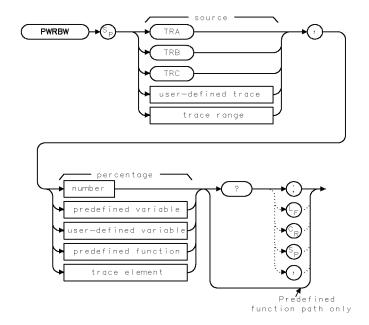
See Also PA, PR, GRID, MK, GRAPH, DSPLY, LINET

PURGE

Erase file from internal or external memory.

ltem	Description
Number of characters	0 - 36

Example


- OUTPUT 723; "MSI MSIB;"
- Select memory card located at default HP-MSIB device.
- OUTPUT 723; "PURGE \$s_2\$;" 20
- Erase state-register file. Delimiters required when file name contains a number.

Description The PURGE command erases files from internal or external memory, regardless of protection asserted by the PSTATE or PROTECT command.

> To purge a file, enter its complete name as it is listed in the catalog of user memory. To verify file names, press State, recall, catalog & MSI to view the catalog of user memory, which is the currently selected storage device.

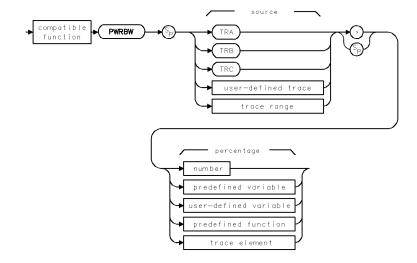
PWRBW

Compute the bandwidth that contains a percentage of the total measured power.

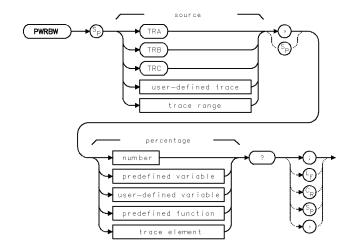
XPWRBW

ltem	Description
Source-Amplitude Range	0 – 10,000 measurement units for linear trace data in <i>TRA, TRB, TRC, trace range</i> , or <i>user-defined trace</i> .
	—32,768 - +32,767 measurement units for logarithmic trace data in <i>TRA, TRB, TRC, trace range</i> , or <i>user-defined trace</i> .
	$\pm 1.8 \times 10^{308}$ when using <i>predefined variable</i> or <i>user-defined variable</i> .
Percentage Range	0 - 100
Source Length Range	3 – 2048 position units. Default is 800 position units when using <i>TRA</i> , <i>TRB</i> , <i>TRC</i> . Truncated if longer than destination length. If shorter than destination length, last element is extended for operation.

PWRBW


Example	130	OUTPUT 723; "SNGLS;"	$Activate\ single ext{-sweep}\ mode.$
2 mampre	140	OUTPUT 723; "CENTERWL 750NM; SP 100NM;	$Activate\ maximum ext{-hold}\ mode.\ Sweep$
	150	OUTPUT 723; "MXMH TRA; TS; TS; TS; TS; "	$trace\ A\ four\ times.$
	160	OUTPUT 723;"PWRBW TRA,99.0?;"	$Query\ bandwidth\ containing\ 99\%$
			$of the\ power\ contained\ in\ full\ span.$
	170	ENTER 723;P	Assign value to computer variable.

Description The PWRBW command first computes the combined power of all signal responses contained in a trace array, then calculates the bandwidth which contains a percentage of the total power. For example, if 100% is specified, the power bandwidth equals the wavelength range of the trace data, which equals the span setting. If 50% is specified, trace elements are eliminated from each end of the array, until the combined power of the remaining signal responses equals 50% of the total power. The wavelength span of these remaining trace elements is the power bandwidth queried, centered around the center wavelength.

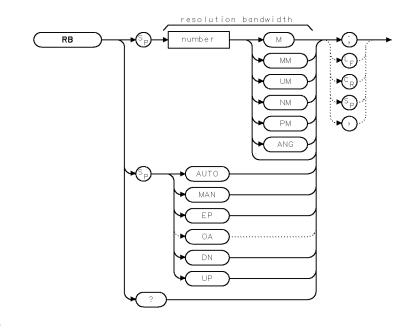

> As another example, if PWRBW of 60% is requested, trace points are reduced from both ends until 20% of the power in one end and 20% of the power in the other end is eliminated. The PWRBW command does not alter the contents of the source trace.

> PWRBW must be used as either a query or as a source in another optical spectrum-analyzer command. Form a query by ending the PWRBW statement with a question mark (?). When used as a query, PWRBW gives the bandwidth equal to a percentage of the total power. Use PWRBW as a source by incorporating the PWRBW statement into any optical spectrum-analyzer command containing predefined function in its syntax diagram. When PWRBW is used as a source, the bandwidth value is used for operation by the command that contains PWRBW.

Predefined-Function Syntax

Query Syntax

PWRBW


Query Response

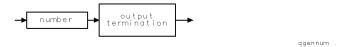
qgennum

RB

Set the resolution bandwidth.

ltem	Description
Resolution-Bandwidth Range	0.08 nm to 10 nm
Step Increment	0.08 and 1, 2, 5 sequence
Coupling	Refer to the optical spectrum analyzer users' guide.
Preset State	RB AUTO

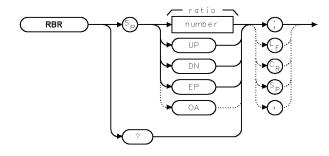
 $Example \qquad \mbox{30 OUTPUT 723;"RB 100NM;"} \qquad \mbox{\it Set resolution bandwidth filter to 100 nm.}$


xrbwl

Description The RB command sets the resolution bandwidth. During normal operation, the resolution bandwidth, sweep time, and span settings are coupled to yield specified amplitude and wavelength accuracy with maximum measurement speed. Whenever any of these settings are changed, this optimum coupling is overridden, but the optical spectrum analyzer continues to maintain specified accuracy whenever possible. The uncalibrated warning, "UNCAL" is displayed whenever the new selection affects amplitude or wavelength accuracy.

Operation is as follow:

- If resolution bandwidth is set to automatic, the resolution bandwidth changes as the span changes according to the ratio set by RBR. If RB MAN is executed, or if the resolution bandwidth is selected with RB, the resolution bandwidth does not change with span.
- If the sweep time is set to automatic, the sweep time changes as the resolution bandwidth changes.


Query Response

See Also RBR, SP and wavelength functions when they change span significantly, such as CENTERWL, STARTWL, STOPWL, FS, SP

RBR

Set ratio of resolution bandwidth to span.

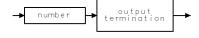
 Item
 Description

 Ratio Range
 Actual range is hardware dependent. Firmware range is 10⁻¹⁰⁰ - 10¹⁰⁰

 Step Increment
 1, 3, 10 sequence

 Preset State
 RBR . 01

Example

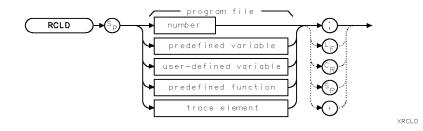

160 OUTPUT 723; "RBR 0.03;"

Set resolution-bandwidth/span ratio to 0.03.

Description The RBR command determines the ratio between the resolution bandwidth and span settings when they are set to automatic.

$$RBR = \frac{resolution\ bandwidth}{span}$$

Query Response



qgennum

See Also RB, SP

RCLD

Recall stored limit lines and user-defined functions, variables, keys, and traces.

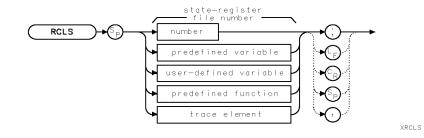
ltem	Description
Range	O - 9999, depending on memory

Example

160 OUTPUT 723; "RCLD 2;"

Description The RCLD command recalls the contents of a program file from the currently selected mass storage device. Unless specified otherwise by the MSI command, internal memory is the storage device. Since program files cannot reside in internal memory, use MSI to select external memory.

> RCLD specifies the number of the file for recall. In the catalog of user memory, the number is shown after the underscore. Refer to the SAVED and the LOAD commands for more information.


> The contents of the recalled file consist of spectrum-analyzer programming commands. When the file is recalled, the contents are executed, storing articles in spectrum analyzer memory. The operation of the RCLD command varies with the contents of the file recalled.

- Files containing trace data are loaded into the specified trace, or trace A if the destination is not specified. All instrument settings are changed to reproduce the state the spectrum analyzer was in when the trace was stored. In addition, the trace is placed in view mode.
- Files containing user-defined variables, functions, traces, or keys are loaded into internal memory. Any duplicate user-defined articles over-write the existing versions.

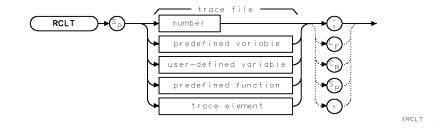
- Files containing an on-end-of-sweep algorithm are loaded into internal memory. The existing on-end-of-sweep algorithm, if present, is erased and replaced with the loaded algorithm.
- Files containing a limit line are loaded into the limit-line table.
- Loading state-register files reactivates the stored instrument state.
- Loading user-key files reactivates the stored (USER)-key menu.

RCLS

Recall instrument settings and title line from a state-register file.

ltem	Description
Range	0 - 9999, depending on memory

Example


OUTPUT 723; "RCLS 2;" 160

Description The RCLS command recalls the contents of a state-register file from the currently selected mass storage device. Unless specified otherwise by the MSI command, internal memory is the storage device. RCLS specifies the number of the file for recall. In the catalog of user memory, the number is shown after the underscore. The contents of the file are loaded into reserved memory, changing the instrument settings to those of the recalled state.

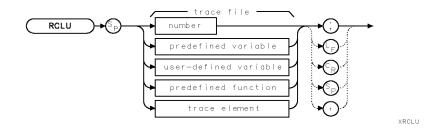
See Also LOAD, SAVES

RCLT

Recall contents of a trace file.

ltem	Description
Range	0 - 9999, depending on memory

Example


160 OUTPUT 723; "RCLT 2;"

Description The RCLT command replaces trace A with the contents of a trace file from the currently selected mass storage device. Unless specified otherwise by the MSI command, internal memory is the storage device. All instrument settings are changed to reproduce the state the spectrum analyzer was in when the trace was stored. View mode is activated. RCLT specifies the number of the file for recall. In the catalog of user memory, the number is shown after the underscore.

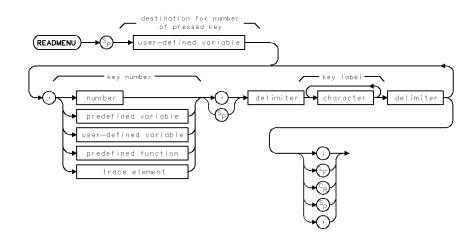
See Also LOAD, SAVET

RCLU

Recall stored menu of (USER) keys.

ltem	Description
Range	O - 9999, depending on memory

Example


OUTPUT 723; "RCLU 2;"

Description The RCLU command recalls the contents of a (USER) key file from the currently selected mass storage device. Unless specified otherwise by the MSI command, internal memory is the storage device. RCLU specifies the number of the file for recall. In the catalog of user memory, the number is shown after the underscore.

> The contents of the file are loaded into the menu for the (USER) key, erasing the previous menu. Any user-defined custom keypad keys are also loaded. Refer to the KEYDEF command for information on defining custom keypad keys.

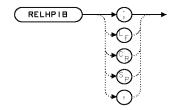
See Also KEYDEF, LOAD, SAVEU

READMENU Build an interactive set of key functions.

ltem	Description
Key-Number Range	Integers, 1 - 14

Example

120 CLEAR 723 Initialize analyzer. 130 OUTPUT 723; "IP;" 140 OUTPUT 723; "VARDEF KEY, 0;" Define a variable for storing the number of the key that was last pressed. 150 OUTPUT 723; "REPEAT;"; Begin repeat loop. 155 OUTPUT 723; "PA 400,700;"; Position pen. 156 OUTPUT 723; "TEXT @EXIT KEY ENDS REPEAT LOOP.@;"; 160 OUTPUT 723; "READMENU KEY,"; Select a user-defined variable, KEY, where the number of the key can be stored when it is pressed. The keys are defined in the next program lines. 170 OUTPUT 723; "1, "SET SPAN", "; SET SPAN is key number 1. 180 OUTPUT 723; "2, %EXPAND RANGE%, "; EXPAND RANGE is key number 2. 190 OUTPUT 723; "14, %EXIT %;"; EXIT is key number 14. 200 OUTPUT 723; "IF KEY, EQ, 1; "; If KEY equals 1, set measurement range to measure the calibrator signal. 210 OUTPUT 723; "THEN; CENTERWL 750NM; SP 100NM; ";


READMENU

```
If KEY equals 2, increase the measurement range.
220
     OUTPUT 723; "ELSIF KEY, EQ, 2; ";
230
     OUTPUT 723; "THEN; CENTERWL 1000NM; SP 100NM;";
     OUTPUT 723; "ELSIF KEY, EQ, 14; ";
240
                                                                 If KEY equals 14, then stop repeating lines 150 -
                                                                270.
250
     OUTPUT 723; "THEN; ABORT; ";
260 OUTPUT 723; "ENDIF; ";
270 OUTPUT 723; "UNTIL KEY, EQ, 14;"
                                                                End repeat-loop definition.
```

Description The READMENU command assigns a series of key labels to form a menu of keys that can be accessed with the (USER) key. READMENU can be used in conjunction with the IF/THEN/ELSE commands. No further commands are processed until the user presses one of the menu keys given by the READMENU command. After the execution is completed, the menus return to their previous state, and the destination for number of pressed key (see syntax diagram) contains the number of the key that was pressed. Keys are numbered 1 through 14. Keys 1 through 7 and 8 through 14 line the right and left sides of the display, respectively.

RELHPIB

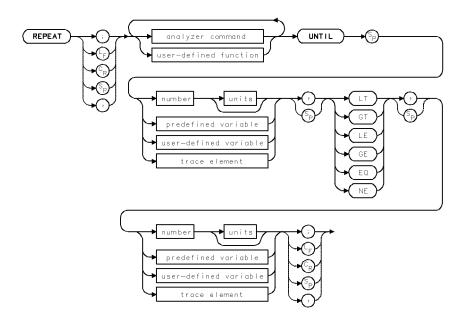
Discontinue control of HP-IB.

XRELHP

Example

140 OUTPUT 723; "OUTPUT 19, K, 'STARTWL'; OUTPUT 19, K, 'F_A'; OUTPUT 19, K, 'HZ'; "

The analyzer controls a device on HP-IB. The analyzer sends data via HP-IB. 150 $\,$ OUTPUT 723; "RELHPIB;"


 ${\it The \ analyzer \ releases \ control \ of \ HP-IB \ so \ that \ another \ device \ can \ control \ the \ bus.}$

Description The RELHPIB command releases analyzer control of HP-IB.

See Also ENTER, OUTPUT

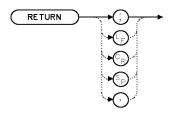
REPEAT/ UNTIL

Repeat a list of analyzer commands until a condition is met.

Example

OUTPUT 723; "STARTWL 600NM; SP 100NM" 250 Set measurement range. OUTPUT 723; "REPEAT;"; 270 Begin repeat loop. 280 OUTPUT 723; "MOV STARTWL, STOPWL; TS; "; Set the start wavelength equal to the stop wavelength and take a sweep. 290 OUTPUT 723; "UNTIL STARTWL, EQ, 1000NM;" End loop when the start wavelength equals 1000 nm.

Description The REPEAT and UNTIL commands work together to form a looping construct. All commands following the REPEAT command are executed repeatedly until the condition specified after the UNTIL command is satisfied. The conditions are

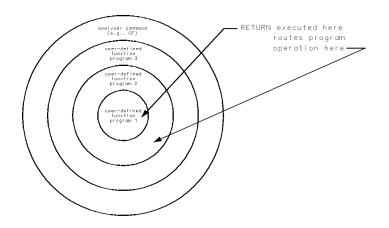

- Less than (LT).
- Greater than (GT)
- Less than or equal to (LE).
- Greater than or equal to (GE).
- Equal to (EQ).
- Not equal to (NE).

If the condition is already satisfied at the time REPEAT/UNTIL is executed the first time, the commands following REPEAT are executed once. The function of REPEAT/UNTIL is limited to the amount of internal memory available at the time they are executed. An error results if there is not enough memory. Executing HP-IB device clear (CLEAR 723) stops the repeating process.

See Also IF/THEN, ABORT, RETURN

RETURN

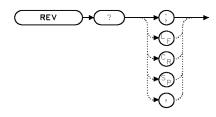
Interrupt operation of current user-defined function, then return to the point where the function was originally encountered.


xretrn

Example The following example contains a user-defined function, called PROGRAM_1, nested inside another function, called PROGRAM_2, which itself is nested inside another function called PROGRAM_3. Thus, PROGRAM_3 executes PROGRAM_2, and PROGRAM_2 executes PROGRAM_1. PROGRAM_1 displays numbers (100, 200, 300, and 400), and also contains the RETURN command. When RETURN is encountered, operation returns to PROGRAM_2.

```
OUTPUT 723; "IP;"
5
                                                                     Instrument preset.
10 OUTPUT 723: "CLRDSP:"
                                                                     Clear graphics from memory.
    OUTPUT 723; "TRDSP TRA,OFF;"
                                                                     Turn off trace A.
    OUTPUT 723; "ANNOT OFF; GRAT OFF; "
30
                                                                     Blank annotation and graticule.
40
    OUTPUT 723; "VARDEF YY,0;"
                                                                     Define user-defined variable equal to 0.
50
60
    OUTPUT 723; "FUNCDEF PROGRAM 1, ^";
                                                                     Define first user-defined function, PROGRAM_1,
                                                                     that prints YY + 100 until YY equals 300.
    OUTPUT 723; "REPEAT;";
70
                                                                     Begin repeat loop.
    OUTPUT 723; "ADD YY, YY, 100; ";
                                                                     Add 100 to YY.
90 OUTPUT 723; "PU; PA 100, YY; PD; ";
                                                                     Position pen at (100, YY).
100 OUTPUT 723; "DSPLY YY, 4, 0; ";
                                                                      Write value for YY.
110 OUTPUT 723; "IF YY, EQ, 300; THEN; RETURN; ENDIF; ";
                                                                     If YY equals 300, execute RETURN, then skip
                                                                     to line 170 and execute the next analyzer
                                                                     command following PROGRAM_1.
120 OUTPUT 723; "UNTIL YY, EQ, 400; ";
                                                                     End loop when YY equals 400.
130 OUTPUT 723; "^; "
140 !
150 !
160 OUTPUT 723; "FUNCDEF PROGRAM_2,";
                                                                     Define second user-defined function, PROGRAM_2.
```

```
170 OUTPUT 723; "^PROGRAM_1; TEXT@INSIDE PROGRAM_2..@; ";
                                                                  Execute PROGRAM_1 and write "INSIDE
                                                                  PROGRAM_2.. "
180 !
190 OUTPUT 723; "FUNCDEF PROGRAM_3,";
                                                                  Define third user-defined function, PROGRAM_3.
200 OUTPUT 723; "^PROGRAM_2; TEXT@INSIDE PROGRAM_3@; ^; ";
                                                                  Execute PROGRAM_2 and write "inside
                                                                  PROGRAM_3."
210 !
220 OUTPUT 723; "PROGRAM_3;";
                                                                  Execute\ PROGRAM\_3.
230 OUTPUT 723; "PU; PA 300, 200; "
                                                                  Position pen.
240 OUTPUT 723; "TEXT@OUTSIDE USER-DEFINED FUNCTIONS@;"
                                                                  Write text.
```


Description The RETURN command interrupts operation of the currently operating user-defined function, as illustrated. The ABORT command also interrupts user-defined function operation, but interrupts operation of all user-defined functions instead.

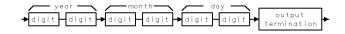
See Also IF/THEN, ACTDEF, FUNCDEF

REV

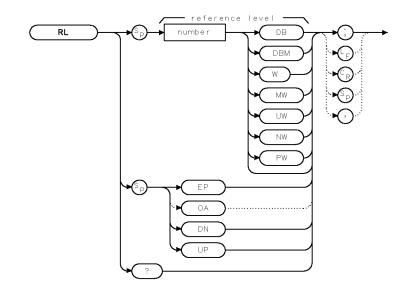
Return firmware date code.

XREV

Example


10 OUTPUT 723; "REV?;"

Query firmware version to computer.

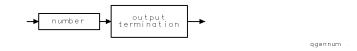

Description The REV query returns the revision number of the firmware (ROM). The revision number is coded by date as shown below:

year - month - day

Query Response

RL Set the reference level.

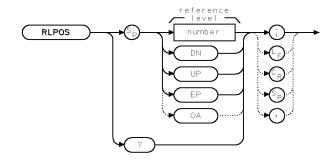
ltem	Description
Reference-Level Range	Actual range is hardware dependent. Firmware range is ± 300 dBm.
Step Increment	One vertical scale division.
Requirements	Update trace data after executing RL.
Preset State	RL ODBM


Example 10 OUTPUT 723; "RL UP;"

Description The RL command sets the absolute amplitude value of the reference level. The default units for the reference level are watts for linear mode and dBm for log mode. Use the AUNITS command to specify different reference level units. The RLPOS command can be used to change the position of the reference level.

CAUTION

The reference level can be set to signal levels that damage the optical spectrum analyzer. Be sure to observe the maximum input power limits.


Query Response

See Also RLPOS

RLPOS

Select position of reference level.

xrlpos

ltem	Description
Range	0 - 10
Step Increment	1
Preset State	RLPOS 9

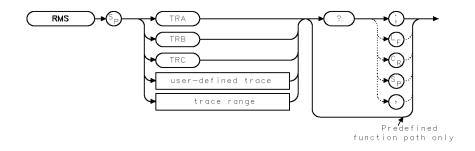
Example

10 OUTPUT 723; "RLPOS 7;"

Position the reference level at the seventh major graticule division.

Description The RLPOS command changes the position of the reference level during log display mode. The top and bottom graticule lines correspond to 10 and 0, respectively. Arrows indicate the reference level line when it is not at the top graticule line.

Query Response



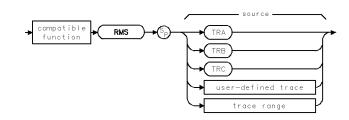
qgennum

See Also RL

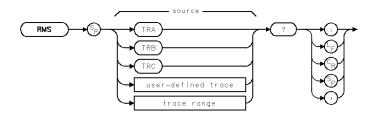
RMS

Compute the root mean square of the specified trace.

ltem	Description
Source-Amplitude Range	0 - 10,000 measurement units for linear trace data in <i>TRA, TRB, TRC, trace range</i> , or <i>user-defined trace</i> .
	-32,768 - $+32,767$ measurement units for logarithmic trace data in TRA, TRB, TRC, trace range, or user-defined trace.
Source-Length Range	3 - 2048 position units. Default is 800 position units when using <i>TRA</i> , <i>TRB</i> , <i>TRC</i> .


Example Query the root mean square of all elements in trace A.

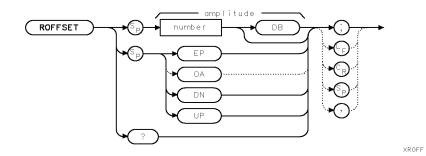
OUTPUT 723; "RMS TRA?;" ENTER 723; N 150


Query root-mean square. Assign value to computer variable.

Description The RMS command computes the root-mean-square of the trace, in measurement units. RMS must be used as either a query or as a source in another analyzer-command function. Form a query by ending the RMS statement with a question mark (?). When used as a query, RMS gives the root-mean-square of the trace, in measurement units. Use RMS as a source by incorporating the RMS statement into the source of any spectrum-analyzer command having predefined function in its syntax diagram. When RMS is used as a source, the root-mean-square value is used for operation by the command that contains RMS.

Predefined-Function Syntax

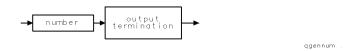
Query Syntax


Query Response

qgennum

ROFFSET

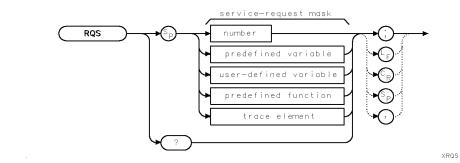
Offset absolute value of amplitude measurements.


ltem	Description
Range	Actual range is hardware dependent. Firmware range is ± 300 dB.
Step Increment	1 major vertical scale division for log mode. 1 major vertical scale division at top of graticule .915 dB for linear mode.
Preset State	ROFFSET ODB

Example

OUTPUT 723; "ROFFSET 60DB;"

Description The ROFFSET command offsets all amplitude readouts on the display without affecting the trace data. "ROFFSET" appears on the display when the offset is on. Values queried to the computer on HP-IB are also offset.


Query Response

See Also RL

RQS

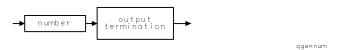
Define conditions that interrupt computer operation.

ltem	Description
Range	Integers from 0 - 255

 $\begin{tabular}{ll} \bf Example & Set the service-request mask so that service is requested when the sweep is completed. \end{tabular}$

100 ASSIGN @Sa TO 723	
110 CLEAR @Sa	$Initialize \ analyzer.$
120 OUTPUT @Sa;"IP;"	
130 OUTPUT @Sa;"RQS 4;"	Specify bit 2, the END-OF-SWEEP bit.
140 OUTPUT @Sa;"CENTERWL 750NM;SP 100NM;SNGLS;TS;"	Set measurement range, then sweep it.
150 ON INTR 7 GOTO Srq	${\it Go to the subroutine Srq at the end of the sweep.}$
160 S=SPOLL(@Sa)	Clear previous service requests.
170 ENABLE INTR 7;2	Prepare to receive interrupt.
180 OUTPUT @Sa;"VAVG 10;"	Begin video averaging, which repeatedly sweeps
	$the \ analyzer.$
190 Wait: GOTO Wait	
200 Srq: Sbyte=SPOLL(@Sa)	Store value of status byte in Sbyte.
210 PRINT Sbyte	Print status byte value.
OUTPUT @Sa;"RQS 0;"	$Clear\ service ext{-}request\ mask.$

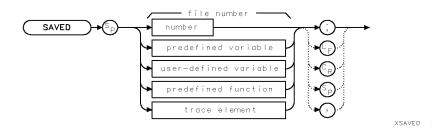
Description The RQS command enables the service-request mode. RQS defines the service-request mask that selects which bits of the status-byte register can generate a service request. Once RQS is executed, computer service is requested whenever any of the selected service conditions occur. For example, executing RQS 2 means that service is requested whenever a message is present in the message area. The analyzer requests service by setting bit 2 in the status-byte register true. Bit 6 of the status-byte register is set whenever the service-request condition is met. Bit 6 in the service-request mask does not need to be set in order for a service-request to occur. The service-request mask is shown in the following table.


Bit Number	Decimal Equivalent	Spectrum-Analyzer State	Description
7	128		Unused.
6	64	RQS	Does not need to be set in order for a service-request to occur.
5	32	ERROR PRESENT	Set to request service when error register contains an error.
4	16	COMMAND COMPLETE	Set to request service at completion of command execution.
3	8		Unused.
2	4	END OF SWEEP	Set to request service at completion of sweep.
1	2	MESSAGE	Set to request service when messages appear, such as UNCAL
			uncalibrated , UNCOR uncorrected , or power bar zeroing.
0	1	TRIGGER ARMED	Set to request service when analyzer is ready to receive a

Spectrum-Analyzer Service-Request Mask

RQS is set to zero when power is applied to the spectrum analyzer or when it is cleared via HP-IB. (For example, the HP BASIC command, CLEAR 723, clears the optical spectrum analyzer when it is at HP-IB address 23, interface 7.)

sweep trigger.


Query Response

See Also SRQ, STB, CLS

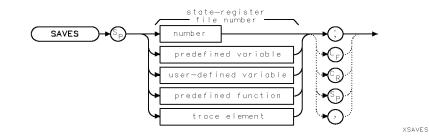
SAVED

Store limit lines and user-defined functions, variables, keys, and traces in a file

ltem	Description	
Range	O - 9999, depending on memory	

Description The SAVED command stores all of the following articles in a file if the articles are present in memory. The file type or identifier, as shown in the catalog of internal memory, is shown in parentheses.

- user-defined variables (VAR)
- user-defined functions (FUNC or AFUNC)
- on-end-of-sweep algorithms (ONEOS)
- user-defined traces (TRACE)
- currently active menu of (USER) keys (not listed in catalog)
- (USER) keys file
- limit lines


SAVED stores files in external memory only, which is specified by the MSI command. Since internal memory is the storage device when power is applied, the MSI command is needed to select the desired external memory. SAVED specifies the number of the file where the article(s) will be stored. The file name is a combination of the file number and the file prefix. When SAVED stores files, entries appear in the catalog as "d_N", where N is the number of the file, and "d_" indicates the file contains a user-defined article, such as a user-defined variable. For example, the entry for SAVED 2 is listed in the catalog as "d_2". Use the PREFX command to change the "d_" prefix from its default setting to another combination of letters.

SAVED

Use SAVED to transfer user-defined articles to memory outside of the optical spectrum analyzer. Once transferred to an external device, erase the entries from internal memory with the DISPOSE, PURGE, or PERASE command if additional internal-memory space is desired. Recall stored files with the RCLD or LOAD command.

SAVES

Save instrument settings and title line in a state-register file for future recall.

ltem	Description
Range	1 - 9999

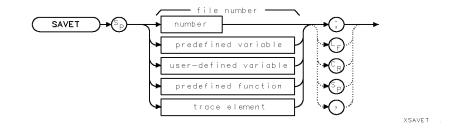
Example

- 30 OUTPUT 723; "PSTATE OFF;"
- OUTPUT 723; "SAVES 3;"

Turn off state-register file protection. Save instrument in file number 3.

Description The SAVES command saves the current spectrum-analyzer state in a state-register file, specified by a number. Information saved includes all front-panel settings and any text in the title line. SAVES stores files in user memory, which is the currently selected mass storage device. Unless specified otherwise by the MSI command, internal memory is the storage device. Files are listed in the catalog by default as "s_N", where N is the number of the file and "s_" indicates the file contains an instrument state. For example, the entry for SAVES 2 is listed in the catalog as "s_2". Use the PREFX command to change the "s_" prefix from its default setting to another combination of letters. (Press State, recall, catalog & MSI to view the catalog of user memory.)

> Use the RCLS or LOAD command to recall file contents. Use PURGE or DISPOSE to erase files. Use PROTECT or PSTATE to prevent inadvertent file erasure from internal memory only.


NOTE

The PSTATE and PROTECT commands do not protect state-register files against erasure or overwriting with the PURGE, ERASE, or LOAD command.

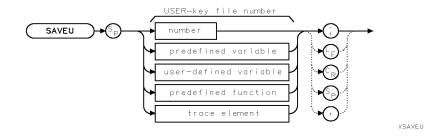
See Also DISPOSE, POWERON, PSTATE, NSTATE, RCLS

SAVET

Store trace A in a file.

ltem	Description
Range	0 - 9999, depending on memory

Example


OUTPUT 723; "SAVET;"

Description SAVET stores the contents of trace A in a file in user memory, which is the currently selected mass storage device. Unless specified otherwise by the MSI command, internal memory is the storage device. Files are listed in the catalog by default as "t_N", where N is the number of the file, and "t_" indicates the file contains a trace array. For example, the entry for SAVET 2 is listed in the catalog as "t_2". Use the PREFX command to change the "t_" prefix from its default setting to another combination of letters. (Press State, recall, catalog to view the catalog of user memory.) Use the RCLT or LOAD command to recall file contents. Use PURGE or DISPOSE to erase files. Use PROTECT to prevent inadvertent file erasure from internal memory only. The PROTECT command does not protect trace files against erasure or overwriting with the PURGE, ERASE, or LOAD command.

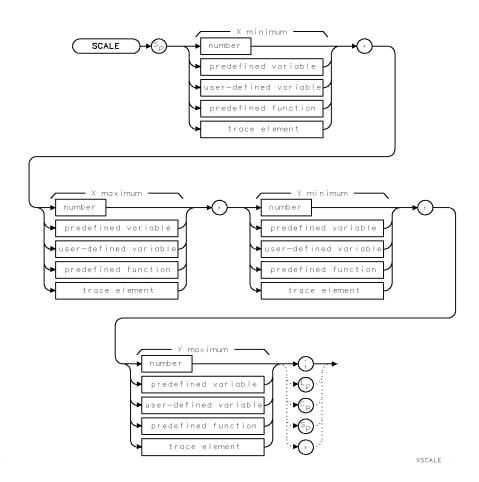
See Also DISPOSE, PROTECT, TRA, FETCH

SAVEU

Save (USER) keys in a file for future recall.

ltem	Description	
Range	Integer, O - 9999, depending on memory.	

Example


OUTPUT 723; "SAVEU;"

Description The SAVEU command stores the user-defined keys that are currently accessed with the (USER) key. It also saves any user-defined custom keypad keys. Refer to the KEYDEF command for information on defining custom keypad keys.

> SAVEU stores files in user memory, which is the currently selected mass storage device. Unless specified otherwise by the MSI command, internal memory is the storage device. Files are listed in the user-memory catalog by default as "u_N", where N is the number of the file, and "u_" indicates the file contains (USER) keys. For example, the entry for SAVEU 2 is listed in the catalog as "u_2". Use the PREFX command to change the "u_" prefix from its default setting to another combination of letters. (Press State, recall,

> catalog & MSI to view the catalog of user memory.) Use the RCLU or LOAD command to recall file contents. Use PURGE or DISPOSE to erase files. Use PROTECT to prevent inadvertent file erasure from internal memory only. The PROTECT command does not protect trace files against erasure or overwriting with the PURGE, PERASE, ERASE or LOAD command.

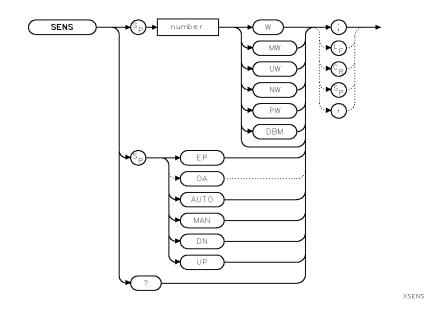
See Also DISPOSE, KEYDEF, PROTECT

ltem	Description	
Range for X-Minimum, Y-Minimum, X-Maximum, Y-Maximum	Integers, $\pm 1.8 \times 10^{308}$	
Preset State	SCALE 0,1000,0,1000	

SCALE

Example Use the SCALE command to draw $Y = X^2$ on the spectrum-analyzer display.

130	OUTPUT	723; "CLRDSP;"	Clear graphics from memory.
140	OUTPUT	723; "TRDSP TRA, OFF;"	$Turn\ off\ trace\ A.$
150	OUTPUT	723; "ANNOT OFF;"	Turn off annotation.
160	OUTPUT	723; "GRAT OFF;"	Turn off graticule.
170	OUTPUT	723; "SCALE -10,10,0,100;"	Change minimum and maximum values for the X axis to -10 and 10 and the Y axis to 0 and 100 .
180	OUTPUT	723; "PU; PA -10,0;"	Outline the perimeter of the coordinate system.
190	OUTPUT	723; "PD; PA -10, 100, ";	Semicolon suppresses carriage-return Λ inefeed.
200	OUTPUT	723; "10, 100, 10, 0, -10, 0; "	
210	OUTPUT	723; "VARDEF XAXIS, -10;"	Define user-defined variable, XAXIS, equal to -10 .
220	OUTPUT	723; "VARDEF YAXIS, 0;"	Define user-defined variable, YAXIS, equal to 0.
230	OUTPUT	723; "PU; PA -10, 100; PD; "	Move pen.
240	OUTPUT	723; "REPEAT;";	Begin repeat loop.
250	OUTPUT	723; "ADD XAXIS, XAXIS, 1; ";	Increase XAXIS by 1.
260	OUTPUT	723; "MPY YAXIS, XAXIS, XAXIS; ";	Square XAXIS.
270	OUTPUT	723;"PA XAXIS,YAXIS;";	Plot square function point by point until reaching the end of the X axis scale.
280	OUTPUT	723; "UNTIL XAXIS, EQ, 10; "	$End\ repeat\ loop\ when\ XAXIS=10.$
290	OUTPUT	723; "PA PU -1,80;"	$Write\ label.$
300	OUTPUT	723; "TEXT\$Y=X"	
310	OUTPUT	723: CHR\$ (130): "\$:"	


Description The SCALE command scales the spectrum-analyzer display for drawing graphics. The default scale is 0 to 1000 for both the X and Y axis, which extend across the width and height of the spectrum-analyzer display. The following commands draw on the spectrum-analyzer display according to the units set by SCALE.

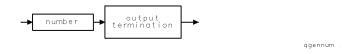
- Display variable (DSPLY)
- Graph trace (GRAPH)
- Display grid (GRID)
- Display marker (MK)
- Set origin (OR)
- Plot absolute value (PA)
- Plot relative value (PR)
- Display text (TEXT)

See Also DWINDOW, OR, MK, IWINDOW, DSPLY, GRAPH, GRID, PA, PR, TEXT, CLRDSP

SENS

Selects the input sensitivity level.

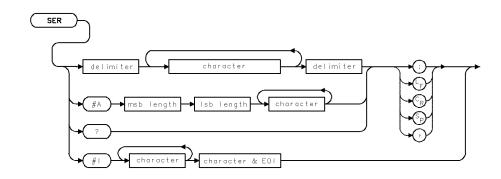
Description ltem Range Actual range is hardware dependent. Firmware range is \pm 300 dBm. Step Increment One vertical scale division. Preset State SENS AUTO


Example

OUTPUT 723; "SENS DN;"

Description The SENS command sets the instrument's sensitivity. When the AUTO argument is used, the optical spectrum analyzer automatically selects the sensitivity based on the current reference level. If video bandwidth is set manually, its value is also used to determine the sensitivity. Autoranging is turned off with AUTO. When the SENS command is set to MAN, autoranging is allowed and the video bandwidth is reduced, if necessary, to provide the requested sensitivity. The default units for the sensitivity include Watts for linear mode and dBm for log mode.

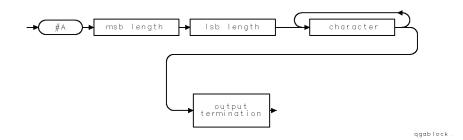
Notice that video bandwidth and internal gains are set as needed to achieve the requested sensitivity based on nominal values. Actual sensitivity realized may not equal the setting chosen.


Query Response Results are always returned in dBm regardless of the value set by AUNITS.

See Also VBW

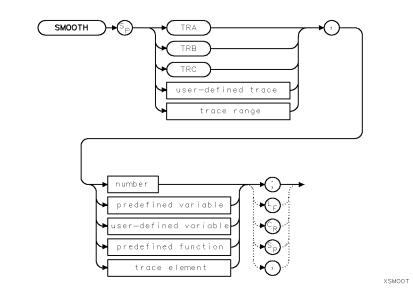
SER

Enter user serial number of instrument.


ltem	Description
Range	Maximum of 21 characters

Example

150 OUTPUT 723; "SER?;"


 $Query\ optical\ spectrum-analyzer\ serial\ number\ to\ computer.$

Query Response

SMOOTH

Reduce amplitude variations on a trace.

ltem	Description
Number-of-Points Range	3 to length of source
Source-Amplitude Range	0 - 10,000 measurement units for linear trace data.
	=32,768 - +32,767 measurement units for logarithmic trace data.
Source-Length Range	3 - 2048 position units. Default is 800 position units when using <i>TRA, TRB, TRC</i> .

Example

5	CLEAR 7	723
7	OUTPUT	723;"IP;"
10	OUTPUT	723; "VARDI

3; "VARDEF NN, O"

20 OUTPUT 723; "CENTERWL 750NM; SP 100NM; "

30 OUTPUT 723; "REPEAT;";

40 OUTPUT 723; "ADD NN, NN, 10; ";

50 OUTPUT 723; "SNGLS; CLRW TRA; TS; ";

60 OUTPUT 723; "VIEW TRA;";

Initialize optical spectrum analyzer.

Define user-defined variable equal to 0.

Set measurement range.

Begin repeat loop.

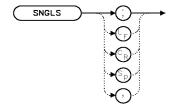
Add 10 to NN.

Activate single-sweep mode. Sweep trace A.

Store and view trace A.

SMOOTH

```
70 OUTPUT 723; "SMOOTH TRA, NN; ";
                                                             Average each point of trace A with points NN/2 either
                                                             side of it.
80 OUTPUT 723; "CLRDSP;";
                                                             Clear graphics from memory.
90 OUTPUT 723; "PA 100,700; TEXT$Smoothing over $;";
                                                             Write text.
100 OUTPUT 723; "DSPLY NN, 4, 1; ";
                                                             Write the value of NN on the spectrum-analyzer
                                                             display.
110 OUTPUT 723; "PA 740,700; TEXT$points$;";
120 OUTPUT 723; "WAIT 2S; ";
                                                             Wait 2 seconds.
130 OUTPUT 723; "UNTIL NN, EQ, 100; ";
                                                             End repeat loop when each trace point has been
                                                             averaged with 50 points on its left, and 50 points
                                                             on its right side.
140 OUTPUT 723; "WAIT 1S;"
                                                             Wait 1 second.
150 OUTPUT 723; "IP;"
                                                             Instrument preset.
```


Description The SMOOTH command smooths the amplitude level of a trace. The amplitude values of the trace are modified according to the number of points specified for the running average. Each point value is replaced with the average of the values (in measurement units) of the given number of points centered around the point. The SMOOTH function performs a spatial, video averaging, in comparison to the temporal averaging achieved by the video-averaging command, VAVG. By replacing the value of each point in a trace with the average value of neighboring points, high-wavelength noise or signals are attenuated without a corresponding effect on low wavelength signals. Thus, the function of SMOOTH resembles narrowing of the video-bandwidth filter without the corresponding increase in sweep time. SMOOTH does reduce wavelength resolution.

> Use SMOOTH as you would use video filtering to view low level signals near the noise floor. If the *number of points* parameter is an even number, then number of points is increased by one. If number of points is greater than the length of the source, then the size of the source is used for the smoothing operation (unless the size of the source is even, in which case the size of the source less 1 is used). The SMOOTH command requires sufficient internal memory to operate. Once the command is completed, any memory required by the SMOOTH function is released for other operations.

See Also VAVG

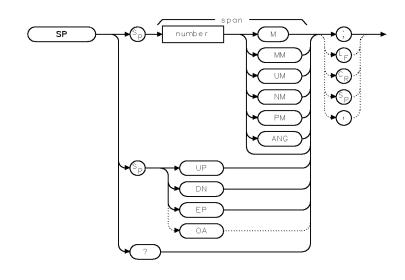
SNGLS

Sweep on demand only.

XSNGLS

Example

- 10 OUTPUT 723; "SNGLS;"
- 20 OUTPUT 723; "TS;"


Turn on single-sweep mode and sweep once. Sweep once.

Description The SNGLS command activates the single-sweep mode. During this mode, the spectrum analyzer sweeps once from the start to the stop wavelength whenever the TS or SNGLS command is executed and the trigger conditions are met. The SNGLS command cannot be substituted for the TS command. Though SNGLS can initiate a sweep, subsequent commands are executed before the sweep is completed. If a sweep is initiated with TS, subsequent commands are not executed until the sweep is completed.

See Also CONTS, DONE, TS, VAVG, ONEOS

SP

Set wavelength span of measurement.

Description ltem Actual range is hardware dependent. Range Step Increment 1,2,5,10 sequence $WL_{span} = WL_{stop} - WL_{start}$ Coupling Preset State

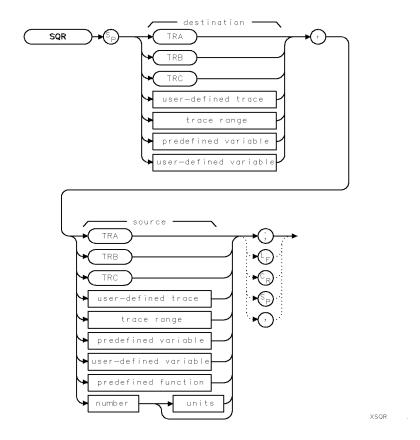
xspwl

Example

10 OUTPUT 723; "SP 500NM;"

Description The SP command sets the wavelength range symmetrically around the center wavelength. The zero-span mode is activated whenever the span is 0 Hz. Zero-span mode configures the spectrum analyzer as a fixed-tuned receiver, where measured signals are displayed in the time domain instead of the wavelength domain. Sweep time (ST) and resolution bandwidth (RB) are coupled to span.

Query Response

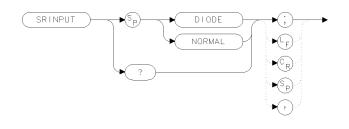


qgennum

See Also RB, ST

SQR

Compute square root of source, point-by-point, and store results in the destination. $\ \ \,$


ltem	Description	
Source-Amplitude Range	0 - 10,000 measurement units for linear trace data in <i>TRA, TRB, TRC, trace range</i> , or <i>user-defined trace</i> .	
	—32,768 - +32,767 measurement units for logarithmic trace data in <i>TRA, TRB, TRC, trace range</i> , or user-defined trace.	
	\pm 1.8 $ imes$ 10 308 when using <i>number, predefined variable</i> , or <i>user-defined variable</i> .	
Source-Length Range	1 – 2048 position units. Default is 800 position units when using <i>TRA, TRB, TRC</i> . Truncated if longer than destination length. If shorter than destination length, last element is extended for operation.	
Destination-Length Range	1 - 2048 position units.	

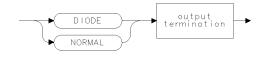
Example Set span to square root of another number.

110 OUTPUT 723; "SQR SP, 1E9;" Set span to square root of 10 to the ninth power.

SRINPUT

Select optical input for stimulus-response measurements.

Example

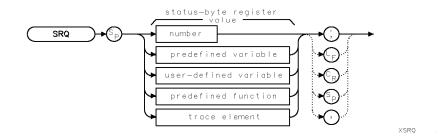

OUTPUT 723; "SRINPUT NORMAL;"

Select the MONOCHROMATOR INPUT.

Description On HP 70951B optical spectrum analyzer modules, the SRINPUT command selects the input connector for stimulus-response measurements. Choices are the MONOCHROMATOR INPUT (SRINPUT NORMAL) or the PHOTODETECTOR INPUT (SRINPUT DIODE) connectors.

> An error is reported if the instrument mode is not set to stimulus-response when this command is executed or if the photodetector input is selected on an HP 70950B/2B module.

Query Response


qsrput .

xsrput

See Also NORM

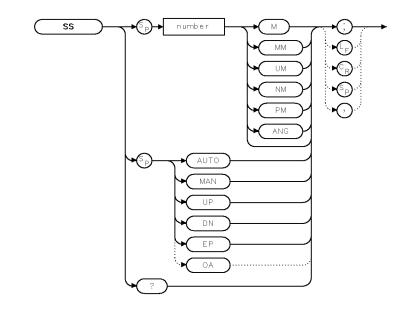
SRQ

Set bit(s) in status-byte register to simulate service request.

ltem	Description
Range	0 - 255

Example

30 OUTPUT 723; "SRQ 4;"


Description The SRQ command simulates service requests by setting bits in the status-byte register. Use the SRQ command to test the operation of programs containing service requests. For example, suppose your program branched to a subroutine whenever a spectrum-analyzer error was detected. Instead of testing the program by initiating spectrum-analyzer errors, execute SRQ 32 to simulate an error condition.

> Notice that bit 4, command complete, sets when this command finishes executing, regardless of whether the "command complete bit" was included in the value supplied.

Spectrum-Analyzer Status-Byte Register

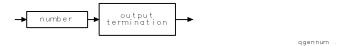
Bit Number	Decimal Equivalent	Spectrum-Analyzer State	Description
7	128		Unused.
6	64	RQS	Set when status-byte register bit and corresponding bit in service-request mask are true. Indicates service-request has occurred.
5	32	ERROR PRESENT	Set when error register contains an error.
4	16	COMMAND COMPLETE	Set at completion of command execution.
3	8		Unused
2	4	END OF SWEEP	Set at completion of sweep.
1	2	MESSAGE	Set when messages appear, such as UNCAL uncalibrated , UNCOR uncorrected , or power bar zeroing.
0	1	TRIGGER ARMED	Set when analyzer is ready to receive a sweep trigger.

SS Set the step increment of CENTERWL.

ltem	Description
Step-Size Range	Actual range is hardware dependent. Firmware range is \pm 500 nm.
Step Increment	1, 2, 5, 10 sequence
Preset State	SS AUTO

Example

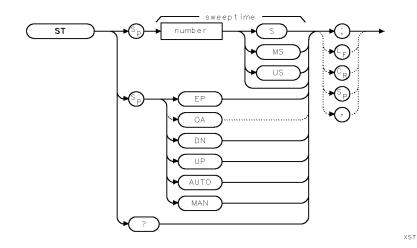
- 10 OUTPUT 723; "CENTERWL 750NM; SP 200NM;"
- 20 OUTPUT 723; "SS 25NM;"
- 30 OUTPUT 723; "CENTERWL UP;"


Set measurement range.
Set step size to 25 nm.
Increase center wavelength by one step size (25 nm).

Description The SS command sets the step increment of the center wavelength changes whenever CENTERWL UP or CENTERWL DN is executed.

> SS AUTO activates the default step size. For spans greater than zero, the step size equals one graticule $(\frac{span}{10})$. For spans equal to zero, the step size equals the resolution bandwidth.

SS MAN indicates that the system uses a value entered an a previous, unknown occasion. In actuality, the SS MAN command de-couples STEP SIZE and sets the step size to the value current in memory.


Query Response

See Also CENTERWL, MKSS, RB

ST

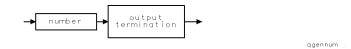
Set the time it takes to sweep from the start wavelength to the stop wavelength.

Description Item Sweep-Time Range 0 - 1000 seconds, or hardware limit. Step Increment 1, 2, 5, 10 sequence Coupling Coupled to sensitivity |SENS|, video-bandwidth |VB|, and span |SP|. ST AUTO Preset State

Example

120 OUTPUT 723; "ST 1S;"

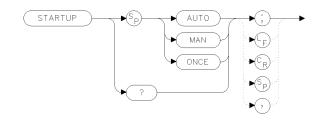
Set sweep time to 1 second.


Description Sweep time, sensitivity, and video bandwidth are coupled to yield the maximum, signal-amplitude accuracy. Selecting a sweep time with ST, or executing ST MAN breaks the coupling. Execute ST AUTO to reestablish coupling. Faster sweep times or measurements are available by changing spectrum analyzer settings as follows:

> • Reduce trace length (TRDEF). The spectrum analyzer requires 10 ms to store measurement results in an 800-point trace. Reducing trace length reduces storage time proportionately.

• Reduce the measurement range (SP).

The time between each sweep (retrace time) is reduced when the active trace and annotation are not displayed (ANNOT OFF; TRDSP OFF).


Query Response

See Also ANNOT, FETCH, SENS, SP, TRDEF, TRDSP, VB

STARTUP

Controls the start up configuration operation of the optical spectrum analyzer.

xstrup

ltem	Description
Default no argument	ONCE

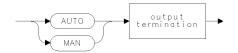
CAUTION

The STARTUP MAN and STARTUP ONCE commands both result in the loss of any internal user calibration data when the system restarts. This is because the data is part of the configuration. In addition, STARTUP MAN and STARTUP ONCE both force the POWERON command into IP if it was in LAST.

Example

100 OUTPUT 723; "STARTUP AUTO;"

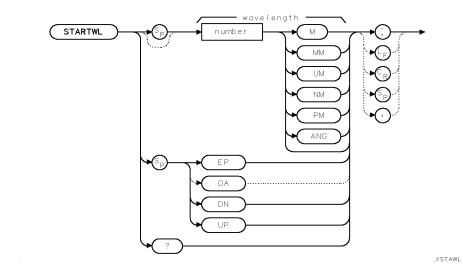
Description The first time the optical spectrum analyzer is turned on, it establishes and checks the communications links with the display. Thereafter, these configuration steps are skipped at turn on, unless the MMS configuration has changed.


Argument	Definition
AUTO	The default operation which performs an automatic MMS configuration the first time the instrument is turned on.
MAN	Forces the system to reconfigure at each power up.
ONCE	Forces the system to reconfigure. After the reconfiguration, the value of reverts to AUTO.

For both STARTUP MAN and STARTUP AUTO, no effect is seen until the next power cycle. When the STARTUP ONCE command is executed, the

STARTUP

instrument break its links (if any) to a display. After the link manipulations and communications are complete, the optical spectrum analyzer performs a warm start reconfiguration with a power-up IP. After the reconfiguration the value of STARTUP reverts to AUTO.


Query Response

qstrup .

STARTWL

Set start wavelength of measurement range.

ltem	Description
Wavelength Range	Actual range is hardware dependent. Firmware range is 600 nm to 1700 nm. With wavelength limit OFF, the range is 350 nm to 2000 nm.
Step Increment	Span/10
Preset State	Minimum value allowed by system configuration.

Example

110 OUTPUT 723; "STARTWL 750NM;"

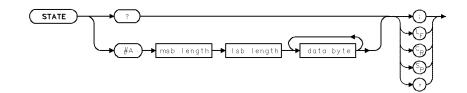
Set start wavelength to 750 nm.

120 OUTPUT 723; "STARTWL UP;"

Increase start wavelength by 10% of the span.

Description The STARTWL command specifies the start wavelength of the measurement range. The start- and stop-wavelength settings are independent, except when the stop wavelength is set lower than the start. In this case, the start wavelength is set equal to the new stop wavelength.

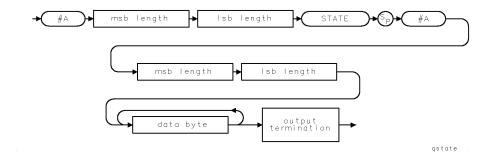
Query Response



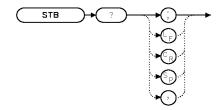
qgennum

See Also Commands that affect wavelength, such as CENTERWL, STOPWL, FS, SP, WLOFFSET,

STATE


Return or receive instrument state information.

Example	140	ALLOCATE State\$[1000]	Allocate a string variable array, State, for storing the spectrum-analyzer state in the computer.
	160	OUTPUT 723; "STATE?;"	Query spectrum-analyzer state to computer.
	170	ENTER 723 USING "-K";State\$	Save response in State in the form of ASCII tokens, requiring a special image
	400	OTTENDITE FOR HTD. H	(" $-K$ ") to receive the data.
	190	OUTPUT 723;"IP;"	$Preset\ spectrum ext{-}analyzer\ state.$
	210	OUTPUT 723;State\$[5];	Restore spectrum-analyzer state by trans- mitting the relevant contents of State from the computer back to the spectrum ana-
			1
			luzer starting with 5 element in array


Description The STATE command transmits all instrument-state information (including front-panel settings) from or to a computer.

Query Response Initial data in data byte is "STATE #A".

STB

Return value of status-byte register.

XSTB

Example Monitor spectrum-analyzer operation without using service-request methods.

10	CLEAR 723	Preset spectrum analyzer.
20	OUTPUT 723; "IP; CLRDSP;"	
30	OUTPUT 723; "SNGLS;"	$Activate\ single ext{-}sweep\ mode.$
40	OUTPUT 723; "CLS;"	Clear status-byte register.
50	OUTPUT 723;"TS;"	Sweep spectrum analyzer.
60	OUTPUT 723; "STB?;"	Query status of status byte, then clear it. The value queried is the sum of 16 (command com- plete), 4 (end of sweep), and 1 (trigger armed), which equals 21.
70	ENTER 723; N	Assign value to computer.
80	OUTPUT 723;"STB?;"	Query status of status byte. Value queried is 16 (command complete), since this is the only task the spectrum analyzer has performed since the status byte was cleared in line 60.
90	ENTER 723; M	
100	DISP N.M	

Description Use the STB command to monitor spectrum analyzer operation. Certain multiple-tasked computer systems, such as UNIX-based computers, monitor spectrum-analyzer operation more efficiently with the STB command than with the service-request command, RQS.

> Use STB to monitor spectrum-analyzer operation randomly at any time. Executing STB is similar to conducting a serial poll of the status-byte register. When STB is executed, the status-byte register is cleared (all bits set to zero). The STB command gives the decimal equivalent of the status-byte register. For example, the COMMAND-COMPLETE and ERROR-PRESENT bits are set when 48 (16 + 32) is returned.

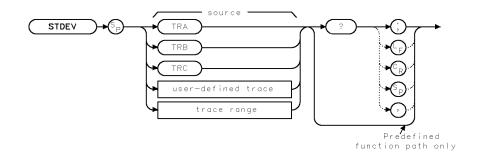
Executing STB? always sets the command-complete bit. For this reason, STB cannot be used to monitor the completion of commands. Refer to the DONE command.

STB must be used as either a query or as a source in another analyzer-command function. Form a query by ending the STB statement with? When used as a query, STB gives the decimal equivalent of the status-byte register to the computer. Use STB as a source by incorporating the STB statement into the source of any spectrum-analyzer command having *predefined function* in its syntax diagram. When STB is used as a source, the decimal equivalent is used for operation by the command that contains STB.

Spectrum-Analyzer Status-Byte Register

Bit Number	Decimal Equivalent	Spectrum-Analyzer State	Description
7	128		Unused.
6	64	RQS	Set when status-byte register bit and corresponding bit in service-request mask are true. Indicates service-request has occurred.
5	32	ERROR PRESENT	Set when error register contains an error.
4	16	COMMAND COMPLETE	Set at completion of command execution.
3	8		Unused.
2	4	END OF SWEEP	Set at completion of sweep.
1	2	MESS AGE	Set when messages appear, such as UNCAL uncalibrated , UNCOR uncorrected , or power bar zeroing.
0	1	TRIGGER ARMED	Set when analyzer is ready to receive a sweep trigger.

Query Response



qgennum .

See Also CLS, SRQ, RQS

STDEV

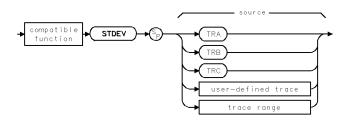
Compute standard deviation of trace amplitude.

XSTDEV

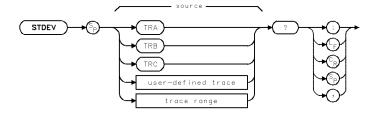
ltem	Description
Source-Amplitude Range	0 - 10,000 measurement units for linear trace data.
	-32,768 - $+32,767$ measurement units for logarithmic trace data.
Source-Length Range	3 - 2048 position units. Default is 800 position units when using \emph{TRA} , \emph{TRB} , \emph{TRC} .

Example

210 NEXT N


130 140 150	OUTPUT 723; "SNGLS;" OUTPUT 723; "CENTERWL 750NM; SP 20NM; RB 100NM;" FOR N=1 TO 10	Activate single-sweep mode. Set measurement range. Begin repeat loop using system level commands in HP BASIC.
160	WAIT 1	Pause.
170	OUTPUT 723; "SP DN; TS;"	$Reduce\ the\ span.\ Sweep\ trace\ A.$
180	OUTPUT 723; "STDEV TRA?;"	$Query\ standard\ deviation\ of\ trace\ A.$
190	ENTER 723;S	$Assign\ value\ to\ computer\ variable.$
200	PRINT "Standard deviation is"; S/100; "DB"	

End repeat loop.

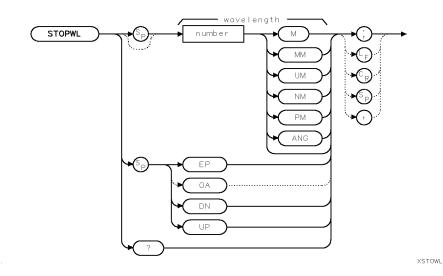

Description The STDEV command calculates the standard deviation of the trace amplitude, in measurement units.

STDEV must be used as either a query or as a source in another analyzer-command function. Form a query by ending the STDEV statement with a question mark (?). When used as a query, STDEV queries the standard deviation to the computer. Use STDEV as a source by incorporating the STDEV statement into the source of any spectrum-analyzer command having predefined function in its syntax diagram. When STDEV is used as a source, the standard deviation is used for operation by the command that contains STDEV.

Predefined-Function Syntax

Query Syntax

Query Response



7-463

qgennum

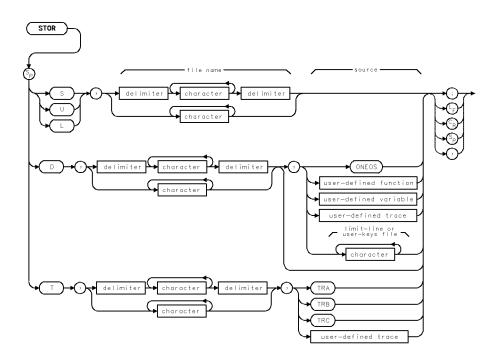
STOPWL

Set stop wavelength of measurement range.

ltem	Description
Wavelength Range	Actual range is hardware dependent. Firmware range is 600 nm to 1700 nm. With wavelength limit OFF, the range is 350 nm to 2000 nm.
Step Increment	Span/10
Preset State	Maximum value allowed by system configuration.

Example

10 OUTPUT 723; "STOPWL 1200NM;"


Description The STOPWL command specifies the stop wavelength of the measurement range. The start- and stop-wavelength settings are independent, except when the start wavelength is set higher than the stop wavelength. In this case, the stop wavelength is set equal to the new start wavelength.

qgennum

Query Response

STOR

Store user-defined articles.

ltem	Description	
File-Name Range	0 - 10 characters	
Delimiters	Required before and after <i>file name</i> when it contains a number or lower-case letters. When <i>file name</i> is upper-case alpha characters only, delimiters are optional.	

Example

10 OUTPUT 723; "STOR S, \$file_1\$;"

Store the file "FILE_1" of instrument settings in internal memory.

Description STOR stores files in the currently selected user memory. Unless specified otherwise by the MSI command, internal memory is the storage device. The information stored depends on the argument selected.

S stores the current instrument settings and the contents of the title line.

D stores all of the following user-defined articles in external memory only.

- user-defined variable
- user-defined function
- on-end-of-sweep algorithm
- user-defined trace
- user-defined keys
- limit lines

T stores trace A, B, or C, or a user-defined trace. If the item for storage is not specified, trace A is stored.

U stores the current configuration of keys accessed with the (USER) key.

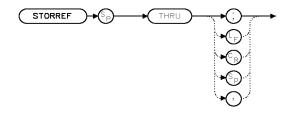
L stores the current contents of the limit-line table.

When storing a user-defined article, enter its complete name. To verify names, view the catalog of user memory. (Press State, recall,

catalog & MSI to view the catalog.) Recall stored files with the LOAD command. Erase stored files with the PURGE or DISPOSE command. Use the PROTECT command to prevent inadvertent file erasure from internal memory only. (The PROTECT command does not prevent erasure with the PURGE, PERASE, or ERASE command.)

Description of User-Memory Catalog

Storing Command	File Type	Standard File Prefix
FUNCDEF, RCLD, LOAD	FUNC	none
ACTDEF, RCLD, LOAD	AFUNC	none
VARDEF, RCLD, LOAD	VAR	none
TRDEF, LIMILINE, RCLD, LOAD	TRACE	none
ONEOS, RCLD, LOAD	ONEOS	none
SAVEU, STOR	ASCII	u_
SAVET, STOR	ASCII	t_
SAVED, STOR	ASCII	d_
SAVED, STOR	ASCII	d_
SAVED, STOR	ASCII	d_
LIMISAV, STOR	ASCII	1_
SAVES, STOR	ASCII	S _
	FUNCDEF, RCLD, LOAD ACTDEF, RCLD, LOAD VARDEF, RCLD, LOAD TRDEF, LIMILINE, RCLD, LOAD ONEOS, RCLD, LOAD SAVEU, STOR SAVET, STOR SAVED, STOR SAVED, STOR SAVED, STOR	FUNCDEF, RCLD, LOAD FUNC ACTDEF, RCLD, LOAD AFUNC VARDEF, RCLD, LOAD VAR TRDEF, LIMILINE, RCLD, LOAD TRACE ONEOS, RCLD, LOAD ONEOS SAVEU, STOR ASCII SAVET, STOR ASCII SAVED, STOR ASCII SAVED, STOR ASCII SAVED, STOR ASCII LIMISAV, STOR ASCII LIMISAV, STOR ASCII


See Also PROTECT, PSTATE

[†] Stored in internal memory only.

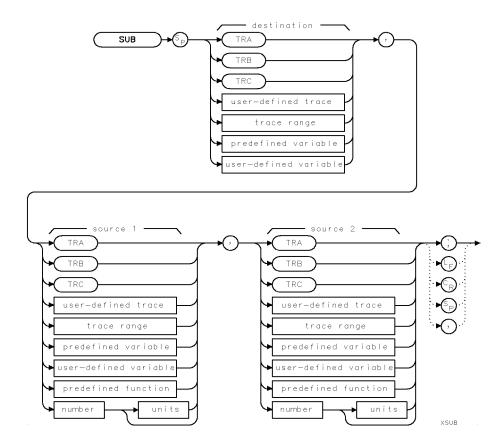
XSTORE

STORREF

Store through references for stimulus-response measurements.

Example 10 OUTPUT 723; "STORREF THRU;"

Description STORREF THRU discontinues measurements with trace B, then transfers through-reference amplitude information measured with trace A to trace B.


STORREF displays "Not stored; $A - X \triangleright A$ on" and does not operate when the following functions are on:

- Trace A Trace B (AMB ON)
- Trace A Trace B + Display Line (AMBPL ON)
- Trace A Trace C (AMC ON)

If AMB is executed after STORREF, measurements made with trace A are normalized (weighted) according to the contents of trace B. If AMC is executed after STORREF, trace A is normalized according to the contents of trace C.

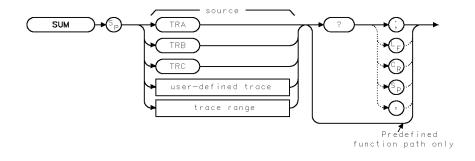
See Also CLRW, PDMEAS, AMB, AMC, AMBPL

SUB Subtract.

ltem	Description
Source-Amplitude Range	0 – 10,000 measurement units for linear trace data in <i>TRA, TRB, TRC, trace range</i> , or <i>user-defined trace</i> .
	—32,768 - +32,767 measurement units for logarithmic trace data in <i>TRA, TRB, TRC, trace range</i> , or <i>user-defined trace</i> .
	\pm 1.8 $ imes$ 10 308 when using <i>number</i> , <i>predefined variable</i> , or user-defined variable.
Source-Length Range	1 - 2048 position units. Default is 800 position units when using TRA , TRB , TRC . Truncated if longer than destination length. If shorter than destination length, last element is extended for operation.
Destination-Length Range	1 - 2048 position units.

Example

10 OUTPUT 723; "SUB CENTERWL, CENTERWL, 100 NM;"


Reduce center wavelength by 100 nm.

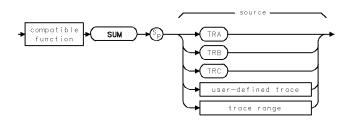
Description The SUB command subtracts source 2 from source 1, point by point, then stores the value in the destination.

When the source is TRA, TRB, TRC, or trace range, ensure the data reflects one complete sweep using the SNGLS and TS commands.

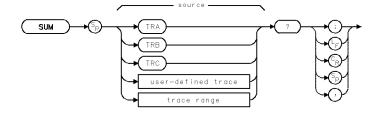
SUM

Compute the sum of amplitude levels detected in each point of a trace.

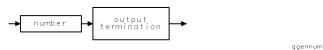
XSUM	


ltem	Description
Source-Amplitude Range	0 - 10,000 measurement units for linear trace data.
	-32,768 - +32,767 measurement units for logarithmic trace data.
Source-Length Range	1 - 2048 position units. Default is 800 position units when using <i>TRA</i> , <i>TRB</i> , <i>TRC</i> .

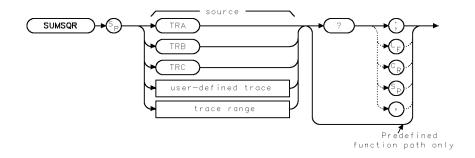
Example Add the amplitudes of all points in trace A.


100 110	OUTPUT 723; "SNGLS; TS;" OUTPUT 723; "SUM TRA?;"	Activate single-sweep mode. Sweep trace A. Query sum to computer.
120	ENTER 723; N	${\it Assign \ value \ to \ computer \ variable}.$
130	DISP N; "MEASUREMENT UNITS"	$Display\ value.$

Description The SUM command gives the sum of the trace amplitudes in measurement units. SUM must be used as either a query or as a source in another analyzer-command function. Form a query by ending the SUM statement with a question mark (?). When used as a query, SUM queries the sum of the trace amplitudes to the computer. Use SUM as a source by incorporating the SUM statement into the source of any spectrum-analyzer command having predefined function in its syntax diagram. When SUM is used as a source, the sum of the trace amplitudes is used for operation by the command that contains SUM. When the source is TRA, TRB, TRC, or trace range, ensure the data reflects one complete sweep using the SNGLS and TS commands.


Predefined-Function Syntax

Query Syntax



Query Response

SUMSQR

Compute the sum of the square of the amplitude levels detected in each point of a trace.

XSUMSQ

ltem	Description
Source-Amplitude Range	0 - 10,000 measurement units for linear trace data.
Source-Length Range	-32,768 - +32,767 measurement units for logarithmic trace data. 1 - 2048 position units. Default is 800 position units when using <i>TRA</i> , <i>TRB</i> , <i>TRC</i> .

Example

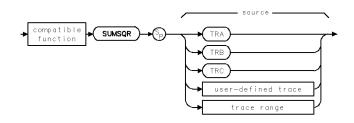
100 OUTPUT 723; "SNGLS; TS;"

110 OUTPUT 723; "SUMSQR TRA?;"

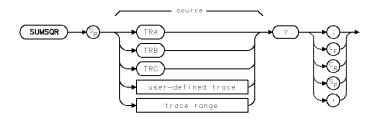
120 ENTER 723; N

130 DISP N; "MEASUREMENT UNITS"

 $Activate \, single\hbox{-}sweep \,\, mode. \,\, Sweep \,\, trace \,\, A.$

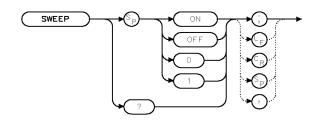

Square the amplitude of all points in trace A, then query their sum.

Assign value to computer variable.


 $Display\ value.$

Description The SUMSQR command gives the sum of the square of the trace-point amplitudes in measurement units. SUMSQR must be used as either a query or as a source in another analyzer-command function. Form a query by ending the SUMSQR statement with a question mark (?). When used as a query, SUMSQR queries the sum of the square of the trace amplitudes to the computer. Use SUMSQR as a source by incorporating the SUMSQR statement into the source of any spectrum-analyzer command having predefined function in its syntax diagram. When SUMSQR is used as a source, the sum of the squares is used for operation by the command that contains SUMSQR. When the source is TRA, TRB, TRC, or trace range, ensure the data reflects one complete sweep using the SNGLS and TS commands.

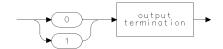
Query Syntax


Query Response

qgennum

SWEEP

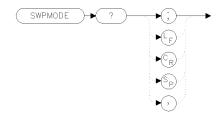
Start or stop analyzer sweep.


XSWEEP

Example

30 OUTPUT 723; "SWEEP OFF;"

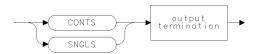
Description The SWEEP command is used to stop the optical spectrum analyzer from sweeping, immediately. Sending SWEEP ON, IP, TS, CONTS, or SNGLS starts the sweep.


Query Response

qgen0

SWPMODE?

Return the current sweep mode.

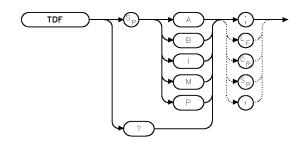

xswpde

Example

00 OUTPUT 723; "SWPMODE?;"

Description The SWPMODE command returns the current sweep mode of the instrument. The returned string will be either SNGLS or CONTS, depending upon whether the instrument is in single sweep or continuous sweep respectively.

Query Response



qswpde

See Also CONTS, SNGLS

TDF

Format trace data: binary, block, ASCII-decimal, measurement units, or parameter units.

 Item
 Description

 Default Mode
 P

XTDF

Example

	•	
110	CLEAR 723;	Preset spectrum analyzer.
120	OUTPUT 723; "IP; "	
130	OUTPUT 723; "VIEW TRA; TRA [50]?;"	Query value of $50th$ element of trace A .
140	ENTER 723;M	Assign value to computer variable.
150	DISP M	Print value.
160	OUTPUT 723;"TDF A;"	When requested, send data as an absolute,
		block-data field. (Trace data is preceded by
		#A.)
170	OUTPUT 723; "TRA?;"	$Query\ trace \hbox{-} A\ amplitude\ information.$
180	<pre>ENTER 723 USING "#, AA, W"; Pound_a\$, Number_of_bytes</pre>	Format computer so that it receives data until
		the variable list is satisfied. "AA" expects two
		characters (#A) and W reads data as a word
		$(16-bit\ words)$.
190	ALLOCATE Data\$[Number_of_bytes]	Define a computer array for storing the infor-
		mation. The length of the array is as long as
		$the\ trace.$
200	ENTER 723 USING "-K";Data\$	Store data in the computer array.
210	OUTPUT 723; "MOV TRA,O;"	Store zeroes in trace A .
220	OUTPUT 723;"TRA #I";Data\$	Send data from computer back to spectrum
		analyzer as an indefinite, block-data field. The
		"I#" indicates that ASCII code 10 (line feed)
		marks the end of the transmission of data.

OUTPUT 723; "TDF P; TRA[50]?; " 230

240 ENTER 723:N DISP N

250

Query trace data as decimal values in absolute units (dBm). Query only the 50th element. Assian data to variable. Print value.

Description The TDF command formats trace information for return to the controller.

TDF P (parameter) gives data as ASCII-decimal values in absolute units (dBm). Trace data values are separated by a "," character.

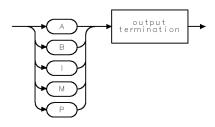
TDF M (measurement) gives data as ASCII-decimal values in measurement units. Trace data values are separated by a "," character.

TDF A gives data as an absolute block data field. The MDS command determines whether data comprises one 8-bit byte or a 16-bit word.

TDF I gives data as an indefinite block data field. The MDS command determines whether data comprises one 8-bit byte or a 16-bit word.

TDF B gives data as binary values in measurement units. The MDS command determines whether data comprises one 8-bit byte or a 16-bit word.

The following tables summarize how the TDF command affects trace data transmission.

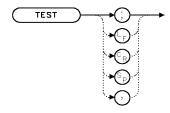

HP-IB Transmission Sequence for Different Trace-Data Formats (TDF)

	TDF P	TDF M	TDF B	TDF A	TDF I
Byte 1	1	1	3	#	#
Byte 2	0	0	232-E01	A	1
Byte 3		0		0	3
Byte 4	0	0		2	232-E01
Byte 5	0	10 EOI		3	
Byte 6	10 E0			232	
				10-E0I	

Trace Data Output Formats for Amplitude Information

Format Command	Spectrum Analyzer Output	Trace Element Output Amplitude of +10 dBm
TDF P	Gives ASCII decimal value. Values are in parameter units. Data output is followed by line feed ASCII code 10 and end-or-identify EOI . Trace points are separated by a comma character.	+ 10.00
TDF M	Gives ASCII integer value. Values are in measurement units. Line feed ASCII code 10 and EOI follow data output.	+ 1000
TDF B	Gives binary value as a 16-bit word, with most significant byte first. Values are in measurement units. Sends EOI with last byte.	3 232
TDF A	Sends series of 8-bit bytes A-block data field . Data is preceded by "#" and "A" and 2 bytes that give the length of the data field. Data followed by line feed ASCII code 10 and EOI. Values are in measurement units.	# A 0 2 3 232
TDF I	Sends a series of 8-bit bytes -block data field . Data is preceded by "#" and "I." Values are in measurement units. Sends EOI with last byte.	# 1 3 232

Query Response



QTDF

 $\mathbf{See} \ \mathbf{Also} \ \mathsf{TRA}, \ \mathsf{TRB}, \ \mathsf{TRC}, \ \mathsf{MDS}$

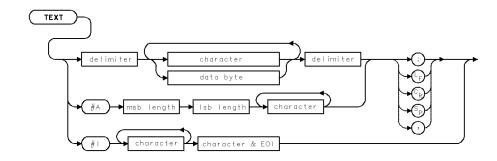
TEST

Perform analyzer self-test.

XTEST

Example

10 OUTPUT 723; "TEST;"


 $Conduct\ the\ self\ test.$

 $\begin{tabular}{ll} \textbf{Description} & \textbf{The TEST command tests spectrum-analyzer operation, then reports errors to the error register.} \end{tabular}$

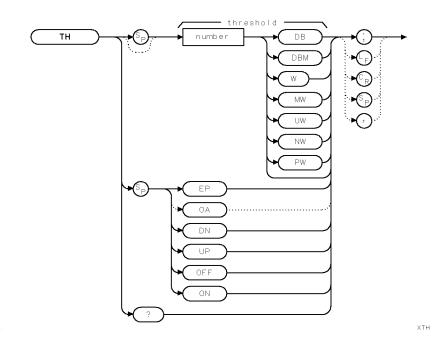
The optical spectrum analyzer returns to its previous state when the test is complete. Execute ERR? to query error codes to the controller. (IP and ERR? clear the error register where errors are recorded.) The system-level command, device-clear, stops the test. The device-clear command in HP BASIC is CLEAR 723 for optical spectrum analyzers at HP-IB address 23 on interface 7.

TEXT

Write message anywhere on spectrum-analyzer display.

Example

```
CLEAR 723
130
                                                                 Initialize spectrum analyzer.
     OUTPUT 723; "IP; "
140
150
     OUTPUT 723; "CLRDSP;"
                                                                 Clear graphics from memory.
     OUTPUT 723; "PU; PA 200, 800; "
160
                                                                 In the up position, move the pen to (200,800).
     OUTPUT 723; "TEXT$";
                                                                 Write text. The "$" is a delimiter which marks
170
                                                                 the beginning and end of the text.
180
     OUTPUT 723; "Text can be ";
190
     OUTPUT 723; "positioned on the ";
     OUTPUT 723; CHR$ (10); CHR$ (13);
200
                                                                 The ASCII codes for carriage return and line feed
                                                                 move the pen to the next available line.
     OUTPUT 723; "display with the ";
210
220
    OUTPUT 723; "PA and PR ";
230 OUTPUT 723; CHR$ (10); CHR$ (13);
240
     OUTPUT 723; "commands.$;"
250 OUTPUT 723; "IT 1; VW OFF; "
                                                                 Address item 1 and blank it.
     OUTPUT 723; "TEXT$Text can be put into items$;"
260
                                                                 Assign text to item 1.
270
     OUTPUT 723; "OR 400,600; VW ON;"
                                                                 Position the item at (400,600) and display it.
```


Description The TEXT command writes text on the spectrum-analyzer display. Place identical delimiters at the beginning and end of the text you wish to display. Text can be positioned two ways. First, PA or PR can position the text. Since TEXT automatically lowers the pen, PD (pen down) is not needed. After TEXT is executed, the pen position remains at the end of the last letter drawn, in the up position. The PA and PR commands should be used to position large paragraphs, such as help screens, that do not require modification at a later time.

Second, text can be positioned with the OR command during the reference-graphics mode. During this mode, text is assigned a nonzero item number with the IT command. Each item can contain up to 35 characters and up to 50 item numbers are available. Once assigned an item number, text can be modified at a later time or enhanced (blinking, inverse video, etc.). TEXT does not function when a graphics window is on (DWINDOW ON).

See Also DWINDOW, IT

TH

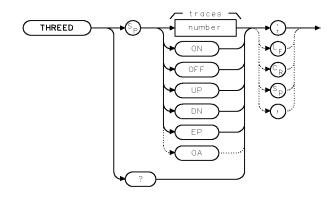
Blank display of trace data below an amplitude level.

ltem	Description
Threshold Range	± 300 dBm
Step Increment	1 vertical scale division
Preset State	TH -90DBM or one major division above the bottom graticule line

Example

140 OUTPUT 723; "TH -70DBM;"

Description The TH command blanks signal responses below the specified threshold level (similar to "base-line clipper" operation). The responses below the threshold value are blanked when a value is entered with TH, or when TH ON, TH UP, or TH DN is executed. The TH command does not affect the amplitude information contained in the trace array.



qgennum .

See Also PDA, TRPST, AUNITS, RL, MEASURE, CNVLOSS, AMPCOR

THREED

Turn on or off the three-dimensional trace display capability.

ltem	Description
Preset State	OFF
ON	Default is 16 Traces
Range	1 to 50 traces

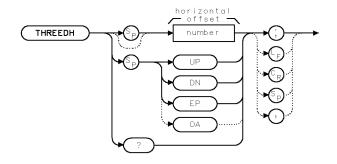
Example

- OUTPUT 723; "THREED ON;" Turn on three-dimensional capability.
- OUTPUT 723; "THREED UP;"
 - Increase traces displayed by one increment.
- 30 OUTPUT 723; "THREED?;"
- $How \ many \ traces \ are \ creating \ the \ three-dimensional$ display.

XTHRD

- ENTER 723; N

Description The THREED command sets the number of previous traces to be displayed simultaneously as a three-dimensional display function. The function is activated when you enter a value between 1 and 50, or when you turn the function on. This value is retained if you turn the function off. It is not changed until you enter a different value.


THREED

See Also THREEDV, THREEDH

THREEDH

Select the horizontal offset of the three-dimensional trace display.

xthreedh

ltem	Description	
Preset State	4 positions, moving toward the right-hand side of the display	
Range	0 to ± 200 positions	
Step Increment	1 position	

Example

- OUTPUT 723; "THREED ON;" 10 OUTPUT 723; "THREEDH -10;"
- OUTPUT 723; "THREEDH?;"
- ENTER 723; N

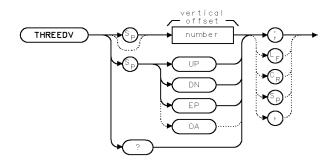
Turn on three-dimensional capability.

Rotate the three-dimensional display 10 positions left, from its current position.

What is the current horizontal position of the three-dimensional traces displayed.

30

Description The THREEDH command allows you to change the horizontal position of the traces, left or right, of a three-dimensional trace display. The function is activated with the THREED command, plus a value between 0 and ± 200 . The horizontal position of the traces is retained if you turn the function off with the THREED OFF command. It is not changed until you enter a new value.


THREEDH

See Also THREED, THREEDV

THREEDV

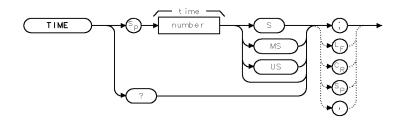
Select the number of traces to create the three-dimensional trace display.

xthreedv

ltem	Description
Preset State	10 positions moving toward the top of the display
Range	0 to ± 200 positions
Step Increment	1 position

Example

OUTPUT 723; "THREED ON;" Turn on three-dimensional capability. 10 OUTPUT 723; "THREEDV 20;" Rotate the three-dimensional display 20 positions up from its current position. 30 OUTPUT 723; "THREEDV?;" What is the current vertical position of the threedimensional display. ENTER 723; N


Description The THREEDV command allows you to change the vertical position of the traces, up or down, from the current position of a three-dimensional trace display. The function is activated with the THREED command, plus a value between 0 and ±200 positions. The vertical position of the traces is retained if you turn the function off with the THREED OFF command. It is not changed until you enter a new value.

See Also THREED, THREEDH

TIME

Monitor time.

ltem	Description
Time Range	$\pm 10^{12}$
Clock Accuracy	$1 \mu s$

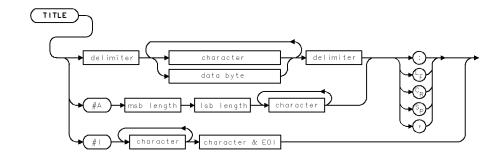
Example

- OUTPUT 723; "TIME OS;" Set clock to zero.
- 20 OUTPUT 723; "WAIT 3;" Wait three seconds.
- OUTPUT 723; "TIME?;" 30 Query elapsed time to controller.
- 40 ENTER 723; N

Assign value to controller variable.

Description The TIME command sets the clock that measures operating time. Clock precision is 1 μ s. Execute TIME? to query the time lapsed since the clock was last set. The clocked time is annotated beneath "TIME STAMP" in the active-function readout until IP or another spectrum-analyzer command changes the active function readout. IP does not change the value of TIME. Time can be used to record the time of an occurrence, especially if the display is monitored with a camera.

Query Response



qgennum

xtime

TITLE

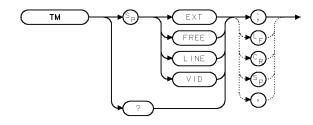
Write a title in the title line.

Item	Description
Number of characters	0 - 36
Preset State	Blank title

Example

OUTPUT 723; "CLRDSP;" 130 Clear graphics from memory. OUTPUT 723; "TITLE\$Title your data\$;" Write text in the title line. The "\$" 140 delimits text. 150 OUTPUT 723; "WAIT 2S;" Wait 2 seconds. 160 OUTPUT 723; "TITLE\$"; Write text. Semicolon required to $suppress\ line\ feed.$ 170 OUTPUT 723; CHR\$(27); "&dB"; Turn on inverse-video display of text.OUTPUT 723; "^Your title^"; 180 190 OUTPUT 723; CHR\$(27); "&d@"; $Turn\ off\ inverse\ video.$ OUTPUT 723;"\$;" 200 End of second title.

Description


The TITLE command displays text in the title line located in the upper portion of the graticule. The TITLE command automatically places the pen down before text is written and raises it after text is written. Place identical delimiters at the beginning and end of the text you wish to display. The maximum number of text characters allowed is 36. Standard escape sequences may be used to produce enhancements such as blinking, inverse video, and underlining. The example shows the command to turn the inverse video on and off. CLRDSP does not affect the contents of the title line. The SAVES command stores the contents of the title line in a state register.

See Also TEXT, SAVES

x tm

TM

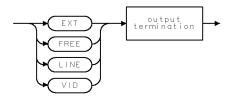
Determine what triggers the sweep (the sweep-trigger mode).

ltem	Description
Preset State	TM FREE

Example

10 OUTPUT 723; "TM EXT;"

Description The TM command selects the trigger mode that determines how the sweep is triggered.

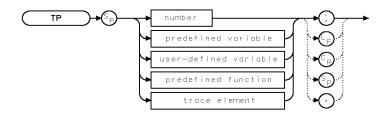

TM FREE (free run) uses the internal circuitry of the spectrum analyzer so that the trigger conditions are satisfied.

 ${\tt TM\ VID\ (video)}$ triggers the sweep with the amplitude level of the detected, video signal.

 ${\tt TM\ LINE\ (line)}\ triggers\ the\ sweep\ with\ the\ line\ voltage.$

 ${\tt TM}~{\tt EXT}~({\tt external})$ triggers the sweep with an external trigger connected to the external-trigger input port.

Query Response


QTM

See Also VTH, VTL, DONE, CONTS, SNGLS, VAVG

XTP

TP

Modify shape of stored, graphics item.

ltem	Description
Point Range	0 - 65,535
Preset State	TP 0

Example

280

OUTPUT 723; "PA 40,30;"

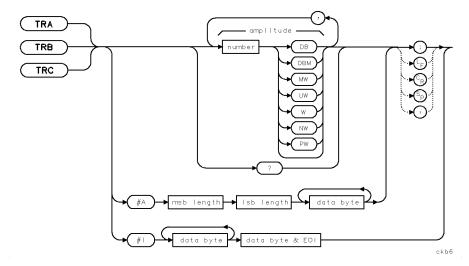
```
160 OUTPUT 723; "CLRDSP;"
170 OUTPUT 723; "DWINDOW 200,200,0,27,0,30;"
```

Clear graphics from memory. Define new coordinate system that fits inside a square with sides 200 units long, in the current units for SCALE (0 to 1000 for both X and Y). Define new coordinate system: X1 axis is from 0 to 27; Y1 axis from 0 to 30.

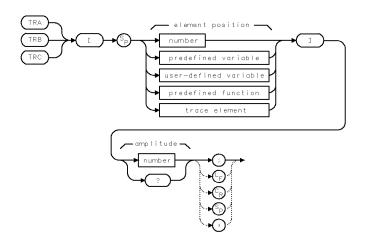
Change it from (27,20) to (40,30).

```
180
     OUTPUT 723; "IT 1; VW OFF; "
                                               Address item 1 and blank it.
190
     OUTPUT 723; "PA 10,0,17,8,";
                                               Define item 1 with eleven
200
     OUTPUT 723; "25,4,21,13,27,20,";
                                                 coordinate pairs, numbered
210
     OUTPUT 723; "18, 19, 12, 30, ";
                                                 0 through 10. The coordinates
220
     OUTPUT 723; "11, 18, 0, 16, ";
                                                 are specified in the new
230
     OUTPUT 723; "11, 11, 10, 0; "
                                                 coordinate system (X1 and Y1).
240 !
250
     OUTPUT 723; "OR 500,600; VW ON;"
                                               Position item at (500,600) and turn it
260
     OUTPUT 723; "WAIT 2S;"
                                               Wait 2 seconds.
270
     OUTPUT 723; "TP 4;"
                                               Address the fourth point (27,20).
```

Description The TP command works in conjunction with the item and plot commands, IT and PA, to modify the shape of referenced graphics called items. The TP command acts as a pointer that selects a point on an item for modification. For example, the triangle below is a graphics item defined by points, numbered 0 through 3.


> #0 #1 #2 #3 |600,0| |700,200| |800,0| |600,0|

Executing TP 1 selects point (700,200) for modification. Follow TP 1 with a PA command to specify the new point coordinates.


See Also IT

TRA/TRB/TRC Return or store trace data.

ckb20

Syntax to Store or Query Array

Syntax to Store or Query One Element

TRA/TRB/TRC

ltem	Description
Amplitude Range	0 - 10,000 measurement units for linear trace data.
Length Range	—32,768 - +32,767 measurement units for logarithmic trace data. 3 - 2048 position units. Default is 800 position units when using TRA, TRB, TRC.

Example Use TRC to store data in a trace.

10 OUTPUT 723; "BLANK TRA;"	$Blank\ trace\ A.$
20 OUTPUT 723; "TRDEF TRC,3;"	$Define\ trace\ C\ as\ a\ three-element$
30 OUTPUT 723;"TRC -10DBM20DBM15DBM	trace.
30 UOIFOI 723; IRC -10DBM,-20DBM,-13DBM	;" Store amplitude values in trace C.
40 OUTPUT 723; "VIEW TRC;"	$View\ trace\ C.$

Transmit trace data to the computer.

10	OUTPUT 723;"TDF A;"	When requested, send data as an absolute,
		block-data field. (Trace data is preceded by
		#A.)
20	OUTPUT 723;"TS;"	$Sweep\ trace\ A.$
30	OUTPUT 723; "VIEW TRA;"	$Stop\ sweeping\ trace\ A\ and\ store\ measurement$
		results.
40	OUTPUT 723;"TRA?;"	$Query\ trace \hbox{-} A\ amplitude\ information.$

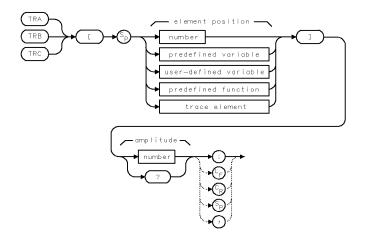
50 ENTER 723 USING "#, AA, W"; Pound_a\$, Number_of_bytes

Format computer to receive data until the variable list is satisfied. "AA" expects two characters (#A) and W reads data as a 16-bit word (two 8-bit bytes).

60 ALLOCATE Data\$[Number_of_bytes]

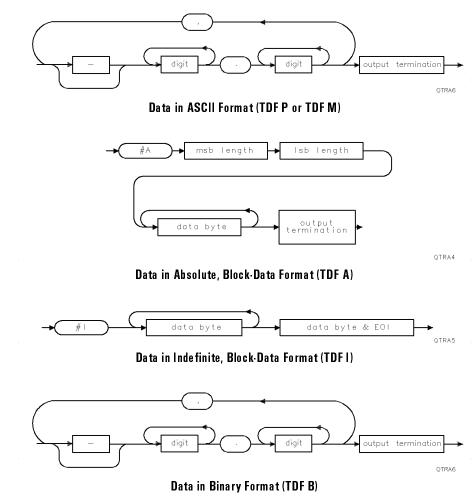
Define a computer array for storing the trace information. The length of the computer array is as long as the trace.

70	ENTER 723 USING "-K";Data\$	Store data in the computer array.
80	OUTPUT 723; "MOV TRA,O;"	Store zeroes in trace A .
90	OUTPUT 723;"TRA#I";Data\$	Send data from computer back to spectrum analyzer as an indefinite block data field. The "#I" indicates that ASCII code 10 (line feed) marks the end of the transmission of data.
100	OUTPUT 723;"TDF P;TRA[50]?;"	Query trace data as decimal values in absolute units (dBm). Query only the fiftieth element.
110	ENTER 723; N	$Assign\ data\ to\ variable.$
120	DISP N	Print value.


ckh20

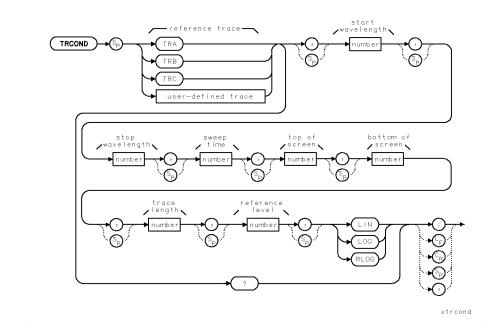
Description The TRA, TRB, and TRC commands send or receive trace-amplitude information for trace A, B, or C. Trace A is described below. Traces B and C operate the same way. To store an amplitude value in one or more points of a trace, follow TRA by amplitude values for each point. Values are stored starting with the first point.

> When number (refer to the syntax diagram) is used to store trace data (for example, TRA -20 DBM, -21DBM), the units for stored data can be specified as shown in the syntax diagram (such as, dB, dBm), provided that the trace data format is in its preset mode, TDF P. If TDF B, TDF A, TDF I, or TDF M has been executed, numbers are stored in measurement units, If relative-amplitude mode is active, stored data is in dB.


> When #A or #I (block data fields) store trace data, the units for the stored data are measurement units, and are interpreted as bytes or words, as specified by the MDS command. When TRA is used to store block data in a trace. TRA overrides any format selection made with the TDF command.

To query the value of a single trace element, follow TRA by the trace element position, in position units, and a question mark. The value queried is in parameter units, unless the trace-data-format command, TDF, specifies measurement units. The amplitude-units command, AUNITS, can also specify the type of parameter units queried.

Data in ASCII Format (TDF P or TDF M)


Query Response

See Also MDS, TDF, and commands that affect wavelength or amplitude range.

TRCOND

Scale trace data displayed in a graphics window.

Item	Description
Start-Wavelength Range	\pm 1000 m or hardware limit.
Stop-Wavelength Range	\pm 1000 m or hardware limit.
Sweep-Time Range	0 - 1000 seconds or hardware limit.
Top-of-Screen Range	-32,768 - +32,767
Bottom-of-Screen Range	-32,768 - +32,767
Trace-Length Range	3 - 2048
Reference-Level Range	± 300 dBm or hardware limit.
Reference-Trace-Length Range	3 - 2048 position units. Default is 800 position units when using <i>TRA</i> , <i>TRB</i> , <i>TRC</i> .
Reference-Trace Amplitude Range	0 – 10,000 measurement units for linear trace data.
	=32,768 - +32,767 measurement units for logarithmic trace data.

TRCOND

Example

140 ALLOCATE Disp mode\$[3]

Allocate string variable in computer for storing conditions.

150 OUTPUT 723: "TRCOND TRA?:"

Query trace conditions to computer.

160 ENTER 723 USING "#, K"; Start, Stop, Sweep

Return data.

170 ENTER 723 USING "#, K"; Top, Bottom, Data

180 ENTER 723 USING "#,K";Reference,Disp_mode\$

190 DISP Bottom; "MEASUREMENT UNITS"

Display minimum trace value.

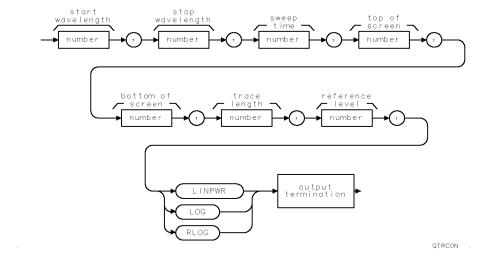
Description The TRCOND command formats the spectrum-analyzer settings so that measurement results stored in trace arrays are properly displayed in a graphics window defined by the DWINDOW command.

> Set the top-of-screen parameter, in measurement units, equal to the maximum amplitude you want to display.

Set the bottom-of-screen parameter, in measurement units, equal to the lowest value you want to display.

Set the trace-length parameter equal to the number of elements in the trace.

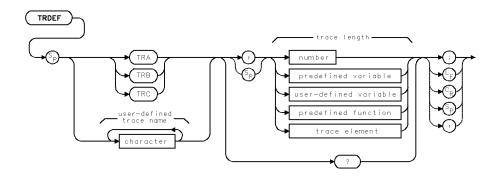
Set the reference-level parameter, in dBm, equal to the reference level active when trace data was stored.


Set the start- and stop-wavelength parameters, in meters, equal to the start and stop frequencies that were active when the trace was stored (swept).

Set the *sweep-time* parameter, in seconds, equal to the sweep time that was active when the trace was stored (swept).

Command arguments LINPWR, LOG, and RLOG determine how data is interpreted. LINPWR interprets data in an absolute, linear power scale. LOG interprets data in an absolute, logarithmic scale. RLOG interprets data in a relative, logarithmic scale.

TRCOND


Query Response

See Also DWINDOW, GRAPH

TRDEF

Change trace length or create user-defined traces.

ltem	Description
Trace-Name Range	1 - 12 characters: A - Z, O - 9, and underscore _ . First character must be a letter. Numbers must be preceded by underscore.
Length Range	3 to 2048
Preset State	TRDEF TRA,800; TRDEF TRB,800; TRDEF TRC,800

Example

- 10 OUTPUT 723; "TRDEF TRA, 400;"
- 20 OUTPUT 723; "TRDEF MLB,3;"
- 30 OUTPUT 723; "TRDEF MLB,?;"
- 40 ENTER 723; N
- 50 OUTPUT 723; "TS; MOV MLB, TRA;"
- 60 OUTPUT 723; "MLB?;"
- 70 ENTER 723; A, B, C

Change the length of trace A to 400 elements.

Define user-defined trace that is 3 points long.

Query length of user-defined trace to computer.

Assign value (3) to computer variable.

Store contents of TRA in MLB

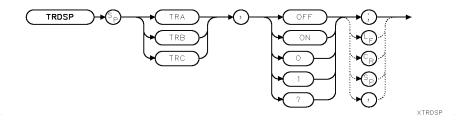
Query contents of MLB to computer.

Assign each trace element to a computer variable.

Description The TRDEF command changes the length of traces A, B, or C, or creates new trace arrays, called user-defined traces, for data storage or manipulation. After a user-defined trace is created, it can be used wherever user-defined trace appears in the syntax diagrams.

> Memory is reserved to contain up to 2048 elements of trace information (from 1 to 2048) for each of the predefined traces A, B, and C. This memory is always protected and is separate from internal memory where user-defined traces, variables, functions, etc., are stored. TRDEF stores user-defined traces in internal memory provided there is sufficient room. Use DISPOSE or PURGE to delete user-defined traces from internal memory. If traces A, B, and C have different lengths, the active trace with the shortest length is used for the specified span. The shorter trace accepts data until filled.

Query Syntax



aaennum

See Also DISPOSE, ERASE, FORMAT, LOAD, PROTECT, RCLD, PURGE, TRA, TDF

TRDSP

Blank display of active trace(s) while measuring.

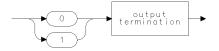
ltem	Description
Preset State	TRDSP TRA,ON; TRDSP TRB,OFF; TRDSP TRC,OFF

Example

- 30 OUTPUT 723; "CENTERWL 750NM; SP 100NM;"
- 40 OUTPUT 723; "TS;"
- 50 OUTPUT 723; "TRDSP TRA,0;"
- 60 OUTPUT 723; "TRDSP TRA,ON;"
- 70 OUTPUT 723; "TRDSP TRA,?;"

Set measurement range.

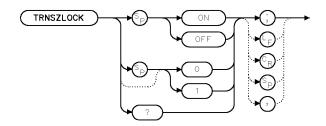
Sweep trace A.


Turn off display of trace A.

 $Display\ trace\ A.$

 $Query\ display\text{-}status\ of\ trace\ A.$

Description The TRDSP command turns off trace A, B, or C without clearing the trace data or interrupting measurements. Thus, data continues to be stored in the active trace. The OFF argument reduces the time duration between sweeps.


Query Response

qgen0 .

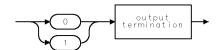
See Also TRPST, TRSTAT

TRNSZLOCK Locks transimpedance amplifier for fast pulse measurements.

xtns71

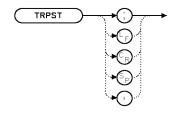
ltem	Description
Preset State	off

Example


OUTPUT 723; "TRNSZLOCK;"

Description The TRNSZLOCK command locks the optical spectrum analyzer's internal transimpedance amplifier.

> Locking the transimpedance amplifier limits its range to ensure wide bandwidth and fast settling characteristics. This allows the optical spectrum analyzer to make accurate fast pulse measurements. Using the INSTMODE PULSE command automatically locks the transimpedance amplifier.


> Normally, the transimpedance amplifier is unlocked, and the full transimpedance range of $1 \text{ k}\Omega$ to $100 \text{ M}\Omega$ is available. However, when locking is selected, the amplifier is limited to the 1 k Ω and 10 k Ω values.

Query Response

TRPST

Preset active trace conditions.

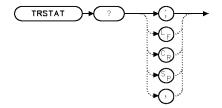
YTRRST

Example

OUTPUT 723; "TRPST;" 110

Reset the traces to a defined state.

Description Use the TRPST command to reset the traces to a defined state without affecting the measurement parameters. The TRPST command executes the following commands to preset trace functions:


- Clear-write trace A. (CLRW TRA)
- Blank trace B. (BLANK TRB)
- Blank trace C. (BLANK TRC)
- Turn off trace-A-minus-trace-B. (AMB OFF)
- Turn off trace-A-minus-trace-B-plus-display-line. (AMBPL OFF)
- Turn off video averaging. (VAVG OFF)
- Set trace A length to 800 elements. (TRDEF TRA, 800)
- Set trace B length to 800 elements. (TRDEF TRB, 800)
- Set trace C length to 800 elements. (TRDEF TRC, 800)
- Display trace A. (TRDSP TRA,ON; TRDSP TRB,OFF; TRDSP TRC,OFF)

See Also CLRW, BLANK, AMB, VIEW, AMBPL, VAVG, TRDEF, TRDSP, TRSTAT

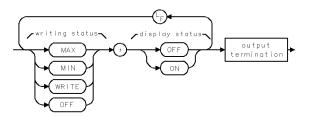
XTRSTA

TRSTAT

Return the status of the active trace.

Example

- 10 ALLOCATE Status\$[40]
- 20 OUTPUT 723;"TRSTAT?;"
- 30 ENTER 723 USING "-K"; States\$


 $Define\ computer\ array\ for\ storing\ characters.$

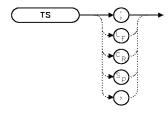
 $Query\ trace\ states.$

Store response in States \$, including line feeds.

Description The TRSTAT query returns the status of traces A, B, and C. The status can be clear-write, blank, max-hold, min-hold, on (view mode), or off.

Query Response In a query response, trace A is described first, followed by trace B and trace C. Writing status describes how the trace data is updated with each sweep. Display status tells whether the trace is displayed on the display.

- MAX is queried when trace data is updated using positive-peak detection.
- WRITE is queried when the trace is updated with normal detection.
- ON is queried when the trace is displayed.
- OFF is queried for both writing and display status when the trace is not updated with each sweep.


Language Reference **TRSTAT**

See Also CLRW, VIEW, BLANK, TRDSP, TRPST

XTS

TS

Sweep the current measurement range.

10 OUTPUT 723; "MKN; TS; MKMIN; "

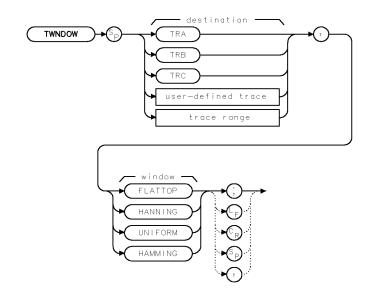
Example

Description The TS command sweeps the current measurement range and stores new amplitude information in the active trace(s).

Use TS for the following reasons:

- Insure trace reflects current measurement range settings.
- Capture traces before processing them with math commands.
- Capture traces before positioning markers.

Each sweep begins when the trigger conditions are met. The take-sweep command is used to synchronize a measurement with the sequence of commands sent to the instrument. When a command sequence is preceded by TS, the user is assured a complete sweep of measurement information has been taken and the end-of-sweep bit in the status-byte register has been set before further commands are processed.

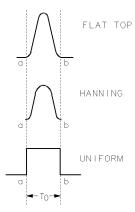

The TS command does not set the command complete bit or the end-of-sweep bit in the status register until all of the sweeps specified by VAVG (video averaging) are completed.

Since there is an input buffer for commands sent via HP-IB, multiple commands may be stored in the buffer, but they are not executed until the sweep is completed. To synchronize computer operation with the completion of a measurement, follow TS with a DONE?.

See Also TM, VTL, VAVG, VTH, SNGLS, CONTS, DONE, FETCH

TWNDOW

Format trace array for use with fast Fourier transform.


XTWNDW .

ltem	Description
Destination-Amplitude Range	0 - 10,000 measurement units for linear trace data.
	-32,768 - $+32,767$ measurement units for logarithmic trace data.
Destination-Length Range	3 - 2048 position units.

Example	170	OUTPUT 723; "CENTERWL 750NM;"	Set measurement range.
Liminipro	180	OUTPUT 723; "SP 0; ST 50MS; "	
	190	OUTPUT 723; "TWNDOW TRC, FLATTOP;"	$Storeflat-top-window$ $algorithm$ $in\ trace\ C.$
	200	OUTPUT 723; "CLRW TRB; BLANK TRA;"	Measure with trace B Blank trace A.
	210	OUTPUT 723; "SNGLS; TS; "	$Sweep\ once.$
	220	OUTPUT 723; "FFT TRA, TRB, TRC;"	Perform fast-Fourier trans- form on trace B and store the results in trace A.
	230	OUTPUT 723; "BLANK TRB; VIEW TRA;"	$Blank\ trace\ B\ Store\ and\ view\ trace\ A.$

Description The TWNDOW function formats a trace array with real values for use with the fast Fourier transform function (FFT). Execute TWNDOW on a trace that has the same length as the trace you wish to transform with FFT.

The window function weights the contents of a trace array according to four algorithms, called trace windows: uniform, Hanning, Hamming, or flat-top. Three of the filters are shown below as graphs in the time domain. The TWNDOW command multiplies a trace array with one of these windows. If the predefined windows do not meet your measurement needs, use the TRA, TRB, TRC commands to build your own window function.

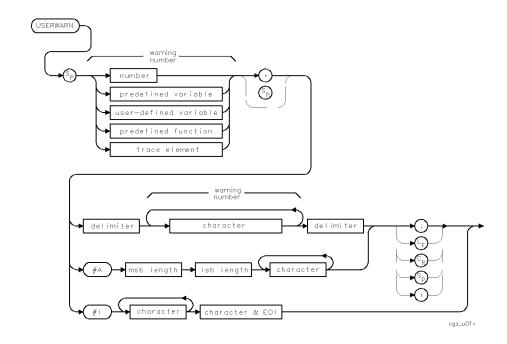
Hanning, Flat top, and Uniform Trace Window Shapes

TWNDOW

The predefined windows simulate passband shapes that represent a give-and-take between amplitude uncertainty, sensitivity, and wavelength resolution. They also minimize side effects caused by the non-continuous, finite nature of the discrete Fourier transform. One side effect is the appearance of aliasing. This is handled by rapid sampling and signal filtering. Another side effect is spurious responses caused by sampling the measurement range for a finite period. This is minimized by weighting the sampled data, but this reduces the resolution of real signals. The compromise of how much to reduce side lobes at the expense of resolution is the purpose of the window choices.

The uniform-window algorithm has the least wavelength uncertainty and greatest amplitude uncertainty. Worst-case accuracy uncertainty is $-3.9~\mathrm{dB}$ and its $3~\mathrm{dB}$ resolution bandwidth is 60% of the Hanning bandwidth. The uniform window does not contain time-domain weighting. Thus, the amplitude data is unchanged. Use the uniform window when transforming noise signals or transients that decay within one sweep-time period. The uniform window also yields the best wavelength resolution, but also produces the highest side lobes for periodic signals.

The Hanning window is a traditional passband window found in most real-time spectrum analyzers. The Hanning window offers a compromise between the flat-top and uniform windows. Its amplitude uncertainty is -1.5 dB and its 3-dB bandwidth is 40% of the flat-top bandwidth. Use the Hanning window when transforming periodic or random data.


The flat-top window has the greatest wavelength uncertainty of the windows, but it has outstanding side-lobe suppression and amplitude flatness. Use the flat-top window to transform periodic signals.

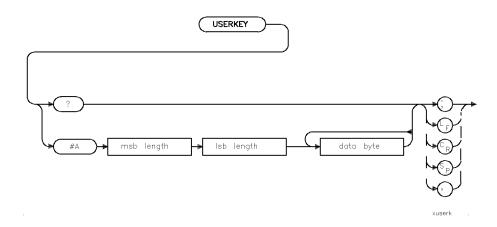
The Hamming window has a bandwidth somewhere between the Hanning and flat-top windows, with more uniform side-lobe suppression than the Hanning window, but less suppression than either Hanning or flat-top for signals farther out of the passbands.

See Also FFT, TWNDOW

USERERR

Create customized error messages and error conditions.

ltem	Description
Error-Number Range	1 - 9999
Error-Text Range	0 - 20 characters


Example 150 OUTPUT 723; "USERERR, 1234, @MAG@;" Report error 1234.
160 OUTPUT 723; "WAIT 2S;" Wait 2 seconds.
170 OUTPUT 723; "XERR?;" Query error report to computer:

Description The USERERR command displays an error message of your own creation and assigns the error a number. The error is reported through the error reporting mechanism.

See Also MSD

USERKEY

Return or receive data that configures (USER) keys.

Example Transmit the (USER) key menu to and from the computer.

200 OUTPUT 723; "USERKEY?;"

210 ALLOCATE Userkeys\$[350]

220 ENTER 723 USING "-K"; Userkeys\$

230 OUTPUT 723; "KEYPST;"
240 P=POS(Userkeys\$, "USERKEY")

250 OUTPUT 723; Userkeys [P];

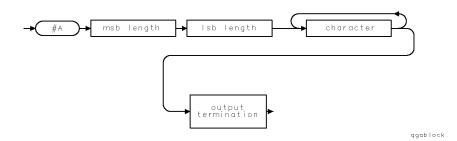
260 DEALLOCATE Userkeys\$

Return key menu to computer.

Define string variable for storing keys.

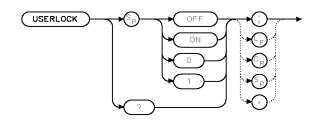
Up to 350 characters can be stored.

Assign key names to string variable, called Userkeys's. "-K" accepts ASCII characters which might otherwise be interpreted as terminators.


Set the USER menu to its preset state.
Set variable P to the position of the "USERKEY" in the string variable, Userkeys\$.
Send contents of Userkeys\$ to optical spectrum analyzer, starting at character P.

Description The USERKEY command transmits the key labels accessed with the front-panel (USER) key. Any labels that are associated with custom keypad keys will also be transmitted. Refer to the KEYDEF command for an explanation of defining custom keypad keys.

USERKEY? returns the key labels to the controller.


The block-data field syntax (#A) reloads the key labels. The label names are sent as an absolute, block-data field.

Query Response

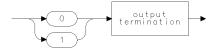
USERLOCK

Limit front-panel operation to the (USER) keys.

XUSERL

Example

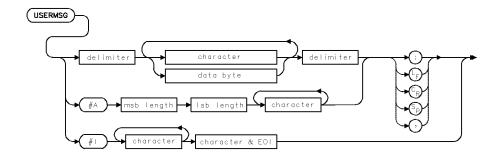
OUTPUT 723; "USERLOCK ON;"


Observe that MENU keys cannot be accessed when MENU is pressed.

OUTPUT 723; "USERLOCK OFF;"

Make (MENU) keys operational.

Description The USERLOCK command limits front-panel operation to keys accessed with the (USER) key, making the (INSTR PRESET) or (I-P) key, and keys accessed with the (MENU) key, inoperative. Use USERLOCK ON to guarantee that a system operator can not stop or override the functions provided in the (USER) menu. USERLOCK OFF restores operation of the (MENU) keys and the (INSTR PRESET) or (I-P) key.

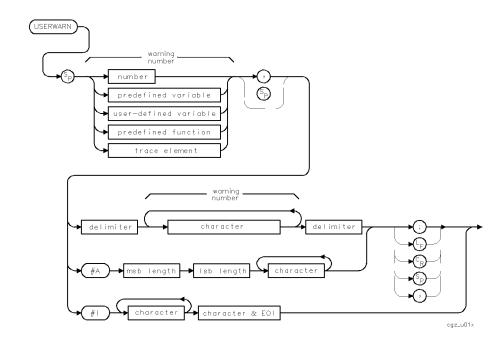

Query Response

qgen0

USERMSG

Write a message on the spectrum-analyzer display that is cleared at your discretion.

Example 10 OUTPUT 723;


10 OUTPUT 723; "USERMSG @Set center wavelength to 300MHz.@;"

Description The USERMSG command writes a message of 39 characters or less in the message area on the display. The message is cleared by pressing any key, or executing IP or MSG?.

See Also MSG

USERWARN

Display a user defined warning message.

Item	Description
Warning-Number Range	10001—19999
Warning-Text Range	0—20 characters

Example

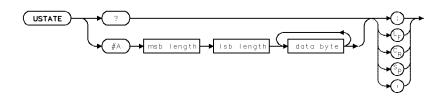
- 100 OUTPUT 723;";"
- OUTPUT 723; "USERWARN 17000, ^Connect the input signal!^;"

Description The USERWARN command allows you to write your own warning message on the display. Use warnings to indicate that the user might not be performing a task properly. Warnings are displayed in a 2 line by 22 character area that is centered at the bottom of the graticule area. The actual warning text is displayed in inverse video using the ADVISE color; this is the same color that is used for the UNCAL indicator.

When creating a user message, do not use the numbers 10000, or 16001 through 16012; these are reserved warning message numbers. Refer to Chapter 4 of the *HP 71450B/1B/2B Optical Spectrum Analyzer Reference* for definitions of these reserved warnings.

The warning message removed from the display after one of the following events occurs:

- 6 seconds elapse from the time the message is displayed.
- Another warning message is displayed.
- A display key is pressed.
- An WARN or XWARN command is used to read the warning.
- An ERR or XERR command is used to read an error message.


Bit 1 of the status byte is used to report the presence of a warning. Refer to STB and related commands for other information concerning the status byte.

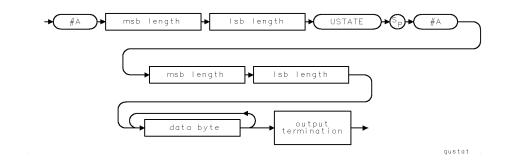
The WARNCTRL command can be used to prevent the display of warnings. An instrument preset (IP command) enables warnings. If display of the active function area is disabled, the warning area will be suppressed; however, the warning can still be accessed via WARN? and XWARN.

See Also STB, USERERR, WARN?, WARNCTRL, XWARN

USTATE

Query or receive data that configures internal memory.

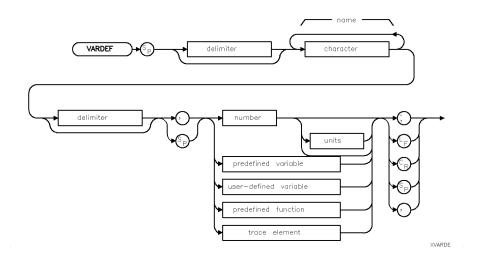
Example


10 OUTPUT 723; "USTATE?;" Query user state to computer.

Description The USTATE command transmits all information that is stored in internal memory by the user. This information is called the user state and includes settings determined by the user and unaffected by instrument preset, such as the HP-IB addresses, power-up setting (POWERON), and the protect-state-register setting (PSTATE). Also transmitted are the contents of internal memory, which are listed in the following table.

Catalog of Internal Memory

Stored Article	Storing Commands	File Type	Default File Prefix
User-defined trace	TRDEF, LIMILINE, LOAD, RCLD	TRACE	none
User-defined variable	VARDEF, LOAD, RCLD	VAR	none
User-defined function	FUNCDEF, LOAD, RCLD	FUNC	none
Active user-defined function	ACTDEF, LO AD, RCLD	AFUNC	none
On-end-of-sweep algorithm	ONEOS, LOAD, RCLD	ONEOS	none
Trace-amplitude correction offsets	AMPCOR	AMPCOR	none
State-register file Instrument settings and title-line	STOR, LOAD, SAVES, NSTATE	ASCII	S_
Trace file	STOR, SAVET	ASCII	t_
(USER) keys file	STOR, SAVEU	ASCII	u_
Limit-line file	STOR, LIMISAV	ASCII	<u> </u> _


Query Response USTATE? queries the user state to the computer. Also queried are instructions required by the spectrum analyzer when the user state information is transmitted to the spectrum analyzer. User-state data is in absolute, block-data format and is preceded by spectrum-analyzer instructions.

See Also DISPOSE, FUNCDEF, VARDEF, ONEOS, KEYDEF, READMENU, TRDEF, SAVES, NSTATE, SAVEU, POWER, PSTATE, PROTECT, USERERR, USERMSG

VARDEF

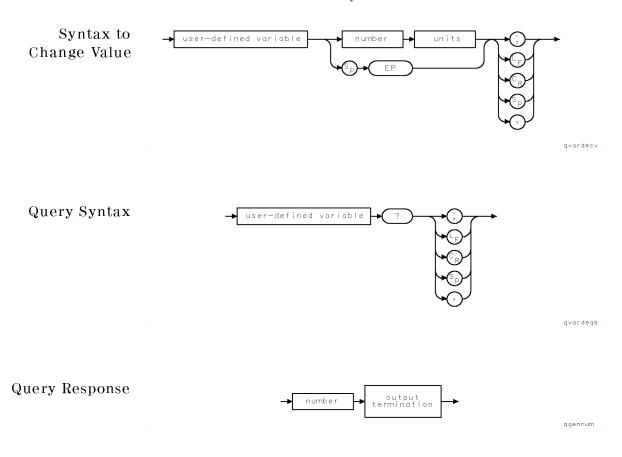
Store user-defined variables in internal memory.

ltem	Description
Variable-Name Range	1 - 12 characters: A - Z, O - 9, and the underscore _
Variable-Name Restrictions	A delimiter is required before and after a file name when it contains a number or lowercase letters. When the file name is uppercase alpha characters only, delimiters are optional.

\mathbf{E}	xa	m	'n	le
Ľ	ла	111	ν.	rc

160 OUTPUT 723; "VARDEF VAR, 0;"

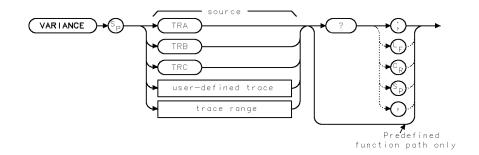
Define user-defined variable, called VAR, equal to zero.


170 OUTPUT 723; "VAR EP;"

Change the value of VARDEF using the frontpanel controls. Enter a value, then press ACCEPT VALUE.

180 OUTPUT 723; "VAR?;"

Query value of VAR to computer.


Description The VARDEF command creates a user-defined variable and assigns it a value. User-defined variables can be used in many of the spectrum-analyzer remote-control processes. Use user-defined variables wherever user-defined variable appears in the syntax diagrams. An error results if a variable name is the same as any reserved word. User-defined variables occupy internal memory. Use the PURGE, FORMAT, or DISPOSE command to clear user-defined variables from memory.

See Also DISPOSE, LOAD, PROTECT, FORMAT, RCLD, PURGE

VARIANCE

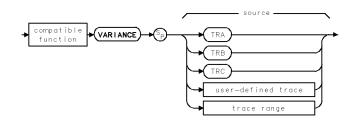
Computes the amplitude variance of the specified trace, in measurement units.

XVARIA

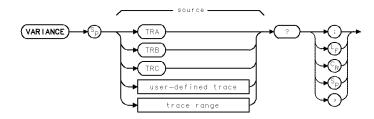
ltem	Description
Source-Amplitude Range	0 - 10,000 measurement units for linear trace data.
Source-Length Range	-32,768 - +32,767 measurement units for logarithmic trace data. 3 - 2048 position units. Default is 800 position units when using TRA, TRB, TRC.

Example

140 OUTPUT 723; "SNGLS; TS;"


Activate single-sweep mode and sweep measurement range.

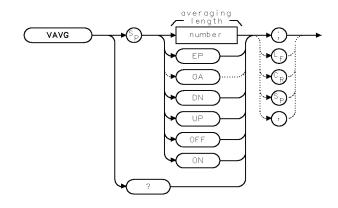
150 OUTPUT 723; "VARIANCE TRA?;" Qi


Query variance of trace A to computer.

Description The VARIANCE command must be used as either a query or as a source in another analyzer-command function. Form a query by ending the VARIANCE statement with a question mark (?). When used as a query, VARIANCE gives the variance to the computer. Use VARIANCE as a source by incorporating the VARIANCE statement into the source of any command having predefined function in its syntax diagram. When VARIANCE is used as a source, the variance is used for operation by the command that contains VARIANCE.

Predefined-Function Syntax

Query Syntax


Query Response

ggennum

VAVG

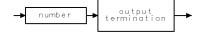
Reduce amplitude variation of trace using digital averaging.

XVAVG

ltem	Description
Averaging-Length Range	0 - 10,000
Step Increment	1, 2, 5, 10 sequence
Preset State	VAVG OFF; VAVG 100

Example

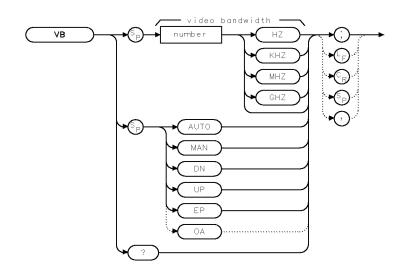
60	OUTPUT 723;"SNGLS;"	$Activate\ single ext{-}sweep\ mode.$
70	OUTPUT 723;"TS;"	Sweep measurement range.
80	OUTPUT 723;"VAVG EP;"	Specify number of sweeps averaged. En-
		ter value with front-panel controls, then
		press ACCEPT VALUE.
90	OUTPUT 723;"TS;"	Sweep.


Description The VAVG command is a digital averaging routine that reduces the noise floor level, but does not affect the sweep time, bandwidth, or any other analog characteristic of the spectrum analyzer. VAVG operates on either trace A, B, or C, one-at-a-time, during clear-write mode.

> The averaging function sets the averaging counter to 1, then begins averaging the trace as it sweeps. The active readout indicates the number of sweeps averaged; the default is 100 unless otherwise specified. Increasing the number of sweeps averaged increases the reduction of displayed noise.

qgennum

When video averaging is on, the take-sweep command (TS) resets the counter to 1, then initiates the number of sweeps specified for averaging. The counter is also reset to 1 whenever any command changes the measurement data. VAVG activates sample detection. Commands that follow VAVG are executed while the averaging routine is executing. However, if TS follows VAVG, subsequent commands after TS are not executed until the end of the averaging routine. Use VAVG to view low-level signals without slowing the sweep time. If a large averaging number is specified, video averaging can lower the noise floor more than 1-Hz video-bandwidth filtering can. Video averaging may also be used to monitor instrument state changes (changing bandwidths, center frequencies, and so forth) while maintaining a low noise floor.



See Also TRPST, TM, VTL, VTH, VB, SMOOTH

VB

Select post-detection, video-bandwidth filter to reduce noise floor of trace data.

l tem Description	
Band wid th Range	1 – 3 kHz, or hardware limit.
Coupling	Sweep time ST is coupled to video bandwidth. Video bandwidth is coupled to resolution bandwidth RB .
Step Increment	1, 3, 10 sequence
Preset State	VB AUTO

Example

140 OUTPUT 723; "VB 3KHZ;"

Set video bandwidth to 3 kHz.

xvb

Description The VB command sets the post-detection, video-bandwidth filter. The video-bandwidth and sensitivity settings are coupled to yield the maximum amplitude response. Specifying a bandwidth with VB, or executing VB MAN breaks the coupling. To reestablish coupling, execute VB AUTO.

> There are two types of detectors used in conjunction with post-detection processing. The optical spectrum analyzer firmware automatically determines which detection mode to enable. The following information explains the uses of the different detector modes.

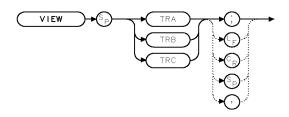
- Sample detection is used when digital filtering is enabled, and the analyzer is in gated sweep and pulsed current modes of operation. When the sample detector is active, an S appears on the display beside the video bandwidth information.
- Peak detection is enabled at all other times. (The S is not displayed.)

There are two modes of operation for video bandwidth. They are automatic and manual mode. The conditions of these modes is listed below:

- In automatic, video-bandwidth mode, the optical spectrum analyzer firmware determines whether to use digital filtering and determines the appropriate bandwidth for the current measurement conditions.
 - The video bandwidth information displayed is the overall post-detection bandwidth, and it may represent the bandwidth of the transimpedance amplifier hardware in cases where digital filtering is disabled.
- In manual, video-bandwidth mode, digital filtering is enabled, unless gated sweeps and pulsed current modes are selected. The filtering is fixed at the bandwidth entered by the operator.

The minimum bandwidth available is 0.1 Hz. The maximum bandwidth available is the lesser of 3 kHz and the bandwidth of the currently selected transimpedance amplifier.

Query Response



aaennum

See Also RB, SP, ST, SENS

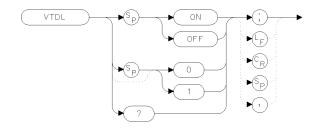
VIEW

Stop sweeping the trace and store trace data.

XVIEW

Example

120 OUTPUT 723; "CLRW TRB; BLANK TRA;" 130 OUTPUT 723; "VIEW TRB;"


 $\label{eq:measure} \textit{Measure with trace B. Blank trace A.} \\ \textit{View trace B}$

Description The VIEW command stops sweeping the specified trace and displays it.

See Also TRSTAT

VTDL

Control the video trigger display lines.

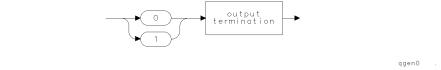
ltem	Description
Preset State	VTDL OFF

Example

100 OUTPUT 723; "VTDL ON; "

Description The VTDL command displays two horizontal video trigger display lines: trigger level and hysteresis offset. The trigger level line is a line that is placed at a level which corresponds to the current video trigger level. On HP 70004A displays, the line is the same color as defined for MARKERS. This is determined by the display's "Adjust Color" menu. On monochrome displays, a dot-dash line is used.

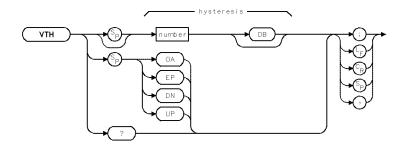
> The hysteresis offset line is an line that is offset from the trigger level line so as to indicate the size and polarity of video hysteresis necessary to cause a video trigger. On HP 70004A displays, the line is the same color as defined for ADVISE (UNCAL) indicators. On monochrome displays, a sparce dot line is used.


The video trigger display lines are automatically activated when video triggering is selected and when either the video trigger level command (VTL) or the video trigger hysteresis command (VTH) is active. (The video trigger level display line cannot be turned off when either VTL or VTH is active.)

The display of these lines is automatically deactivated when another trigger mode is selected (as long as neither VTL nor VTH is active). The VTDL

VTDL

command can be used to override the automatic operation. The displays work in logarithmic, linear volts, and linear watts display modes.

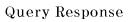

Query Response

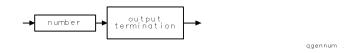
See Also VTDL, VTH, VTL

VTH

Select slope of detected signal shape that triggers sweep.

ltem	Description
Range	± 300 dB
Step Increment	1 major vertical division during log mode. 1 major vertical division at top graticule line .915 dB during linear mode.
Preset State	VTH 3DB

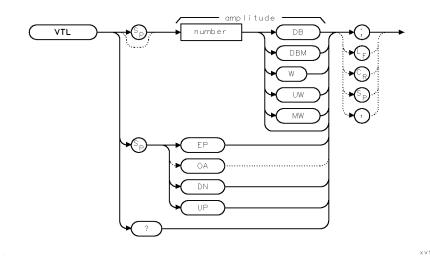

Example


30 OUTPUT 723; "VTH; "

Description The VTH command determines the video trigger hysteresis. The hysteresis is the direction and magnitude of change in the detected video-signal level that triggers a sweep during the video trigger mode. Triggering occurs when the following conditions are met:

- The video-signal level changes by the magnitude specified by the VTH command.
- The video-signal level passes the video-trigger level specified by the VTL command.

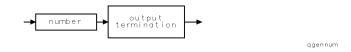
When VTH specifies a positive value, the sweep triggers on the positive-going edge of the detected signal envelope. A negative value triggers a sweep on the negative-going edge.



 $See\ Also\ TS,\ VTL,\ TM$

VTL

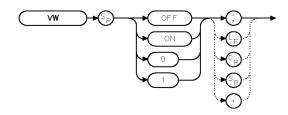
Select signal level that triggers sweep.


ltem	Description	
Amplitude Range	\pm 300 dBm or hardware limit.	
Step Increment	1 major vertical division	
Preset State	VTL -100DBM or value at bottom of graticule .	

Example

OUTPUT 723;"VTL -50DBM;"

Description During the video trigger mode, the sweep begins when the detected signal level has reached a specific amplitude level. The VTL command specifies the amplitude level.


Query Response

See Also TS, TM, VTH

VW

Blank or display graphics item.

Example

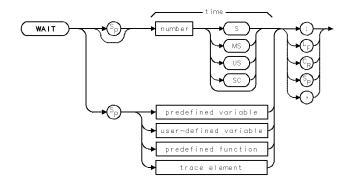
OUTPUT 723;"IT 1; VW OFF;"

Address item 1. Blank item so that it is not seen while it is being

- 60 OUTPUT 723; "TEXT\$This is item #1.\$;"
- 70 OUTPUT 723;"IT 1; OR 300,600;"
- 80 OUTPUT 723;"VW ON;"

defined.

Define item 1 as text.


Position item. Display item 1.

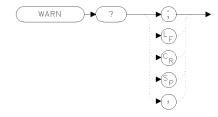
Description The VW command blanks or displays graphics items that have been created with the IT command.

See Also CLRDSP, IT

WAIT

Suspend program execution.

ltem	Description
Range	0 - 1000 seconds


Example

130	OUTPUT 723; "TRDSP TRA, OFF;"	Blank trace A.
140	OUTPUT 723;"WAIT 2S;"	Suspend program operation for 2 seconds.
150	OUTPUT 723; "TRDSP TRA,ON;"	$Display\ trace\ A.$

Description The WAIT command suspends program execution for the specified time.

WARN?

Return a listing of all reported warning codes.

Example

- 100 OUTPUT 723;";"
- OUTPUT 723; "WARN?;"

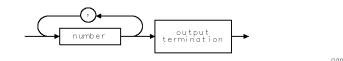
Description If no warnings have been displayed, the default value of 10000 is returned. Bit 1 of the status byte is used to report the presence of a warning. Refer to STB and related commands for other information concerning the status byte. The following list shows the possible error messages. Of course, user-defined error messages are not included. For more information on the error messages, refer to Chapter 4 of the HP 71450B/1B/2B Optical Spectrum Analyzer Reference.

Error 10000: Default - No warning displayed.

Error 16001: Simulated hardware

Error 16002: Trace length changed (due to ADC switch)

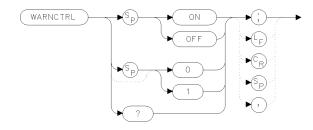
Error 16003: Usable RBW limited Error 16004: Usable VBW limited


Error 16005: Sweep too fast Error 16006: No current state 0

Error 16007: Possible compression Error 16008: No autoalign data (OSA)

Error 16009: RBW too wide for PP (currently unused)

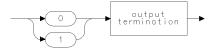
Error 16010: RBW too wide for PC Error 16011: Span too large (OSA) Error 16012: PSDAC adjust past RL



 $\mathbf{See} \ \mathbf{Also} \ \ \mathbf{STB}, \ \mathbf{USERWARN}, \ \mathbf{WARN?}, \ \mathbf{WARNCTRL}, \ \mathbf{XWARN}$

WARNCTRL

Enable or disable warning messages.

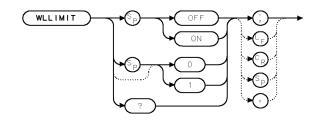


xwrncl

- OUTPUT 723;";"
- 100 OUTPUT 723; "WARNCTRL ON;"

Description The WARNCTRL command prevents the display and reporting of warnings. An instrument preset (IP command) enables warnings. If display of the active function area is disabled, the warning area will also be suppressed. Warnings can still be accessed via WARN and XWARN.

Query Response



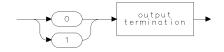
qgen0

See Also STB, USERWARN, WARN?, WARNCTRL, XWARN

WLLIMIT

Extend wavelength measurement range.

XWLLIM

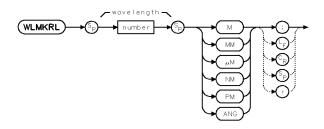

ltem	Description	
Preset State	WLLIMIT ON	

Example

10 OUTPUT 723; "WLLIMIT OFF;"

Description The WLLIMIT command extends the wavelength measurement range. The normal range (WLLIMIT ON) is from 600 nm to 1700 nm. The extended range (WLLIMIT OFF) is from 350 nm to 2000 nm (uncorrected).

Query Response



qgen0 .

See Also Commands affecting wavelength, such as CENTERWL, STARTWL, STOPWL, FS, and SP.

WLMKRL

Position the left power integration point to a location based upon the wavelength value entered.

ckb18

\mathbf{E}	xa	m	\mathbf{n}	le
_	71 CU	111	10	\sim

100 [OUTPUT	723; "CENTERWL	900NM;"
-------	--------	----------------	---------

105 OUTPUT 723; "TS;"

OUTPUT 723; "WMLKRR 1000E-9;"

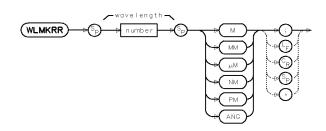
OUTPUT 723; "WLMKRL 800 NM;"

Set the center wavelength to 900 nm.

Update the current trace.

Position the right power integration point

Position the left power integration point to


800 nm.

Description The WLMKRL command positions the left power integration point to a location based upon the wavelength value entered. The left point is specified as marker number 4 and the right point is specified as marker number 5.

See Also AMPMKR, WLMKRR

WLMKRR

Position the right power integration point to a location based upon wavelength value entered.

ckb17

\mathbf{E}	xa	m	'n	ام
\mathbf{L}	Λa	111	ν.	\mathbf{r}

100	OUTPUT	723; "CENTERWL	900NM;"
105	OUTPUT	723; "TS; "	

OUTPUT 723; "WMLKRR 1000E-9;"

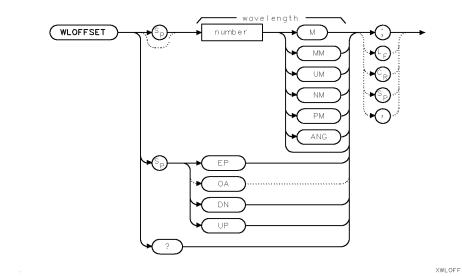
OUTPUT 723; "WLMKRL 800 NM;"

Set the center wavelength to 900 nm.

Update the current trace.

Position the right power integration point

to 1000 nm.


Position the left power integration point to 800 nm.

Description The WLMKRR command positions the right power integration point based on upon the wavelength value entered. The left point is specified as marker number 4 and the right point is specified as marker number 5.

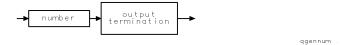
See Also AMPMKR, WLMKRL

WLOFFSET

Offset wavelength scale for all absolute wavelength readouts, inputs, and outputs.

ltem Description Offset range Actual range limited by hardware. For spans greater than 0, the step increment is span/10. For zero span, Step Increment the step increment is the resolution bandwidth. Preset State WLOFFSET 0

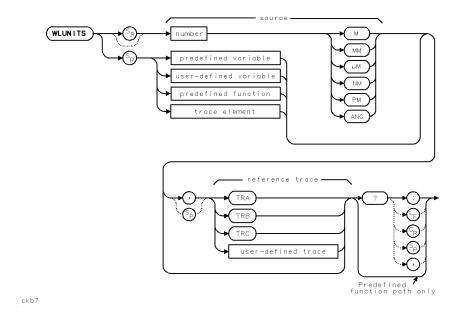
Example


OUTPUT 723; "WLOFFSET 10NM;"

Description The WLOFFSET command offsets the wavelength scale for all absolute wavelength readouts, inputs, and outputs.

> Relative values, like span and delta marker, are not offset. Whenever the offset is active, "WLOFFSET" appears below the graticule. Execute WLOFFSET O or IP to turn off the offset.

WLOFFSET


Query Response WLOFFSET value is returned as measurement units. Measurement units = $100 \times \text{value}$ in dBm.

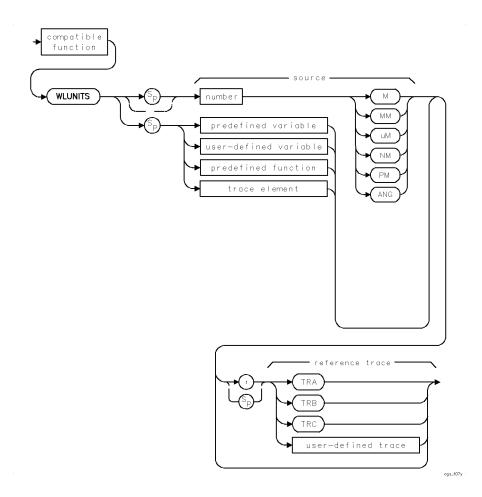
See Also Commands affecting wavelength, such as CENTERWL, STARTWL, STOPWL, FS, and SP.

WLUNITS

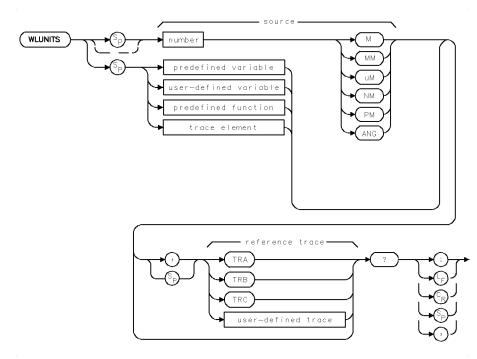
Convert trace position units to wavelength.

ltem	Description		
Reference-Trace Length Range	3 - 2048 position units. Default is 800 when using <i>TRA, TRB, TRC</i> .		
Source Range	1 to 2048 position units.		
Reference-Trace-Amplitude Range	0 - 10,000 measurement units for linear trace data.		
	-32,768 - +32,767 measurement units for logarithmic trace data.		

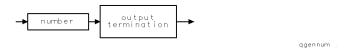
WLUNITS


Example Determine the wavelength that corresponds to a point's relative position on a trace.

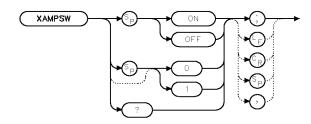
```
10 CLEAR 723
                                                Initialize analyzer.
20 OUTPUT 723:"IP:":
30 OUTPUT 723; "CLRDSP;"
                                                Clear graphics from memory.
40 OUTPUT 723; "PU; PA 200, 700;"
                                                Place pen up, then move it to (200,700).
50 OUTPUT 723; "TEXT$8th element is $;"
                                                Write text.
60 OUTPUT 723; "DSPLY WLUNITS 8, TRA, 7, 2;"
                                                Display wavelength value of 8th
                                                element in trace A.
70 OUTPUT 723; "TEXT$M$;"
                                                Print "M" after variable.
```


Description The WLUNITS command converts a trace point indicated in position units to wavelength. In zero-span mode, position units are converted to units of time. A position unit describes the position of a point along the horizontal axis of a trace. The point at the left end of the trace has a position-unit value of 1. The point at the right end of an 800-point trace has a position-unit value of 800. If a reference trace is not indicated, the number of points in the currently active or last active trace is assumed for WLUNITS operations and the conversion is based on the wavelength values of that trace.

> WLUNITS must be used either as a query or as an argument to another function. Form a query by ending the WLUNITS statement with a question mark (?). When used as a query, WLUNITS gives the wavelength value of the specified trace position. Use WLUNITS as an argument by incorporating the WLUNITS statement into the source of any spectrum-analyzer command having predefined function in its syntax diagram. When used as a source, WLUNITS uses the wavelength value of the specified point for operation by the command that contains WLUNITS.


Predefined-Function Syntax

Query Syntax



Query Response

XAMPSW

Activate the rear-panel TRANS-Z INPUT connector.

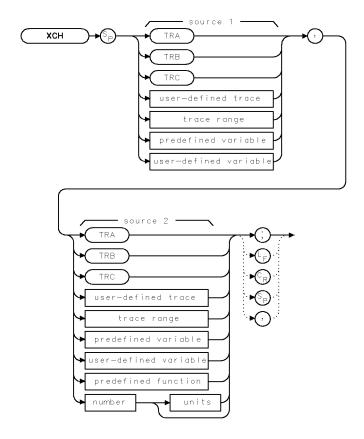
Example


OUTPUT 723; "XAMPSW ON;"

Description The XAMPSW command allows input via the rear-panel TRANS-Z INPUT connector. Normally, the output of the optical spectrum analyzer's internal photodetector connects to a transimpedance amplifier. Using the ON argument switches the amplifier's input from the photodetector to the rear-panel TRANS-Z INPUT connector.

CAUTION

The maximum current allowed at the rear-panel TRANS-Z INPUT connector is ± 10 mA and the maximum input voltage is ± 10 V.

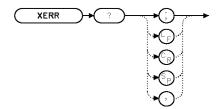

Query Response

agen0

XCH

Exchange source contents.

XXCH


ltem	Description
Source or Destination Amplitude Range	0 – 10,000 measurement units for linear trace data in <i>TRA, TRB, TRC, trace range</i> , or <i>user-defined trace</i> .
	-32,768 - +32,767 measurement units for logarithmic trace data in TRA, TRB, TRC, trace range, or user-defined trace.
	\pm 1.8 $ imes$ 10 308 when using <i>number</i> , <i>predefined variable</i> , or user-defined variable.
Source-Length Range	1 - 2048 position units. Default is 800 position units when using <i>TRA</i> , <i>TRB</i> , <i>TRC</i> .

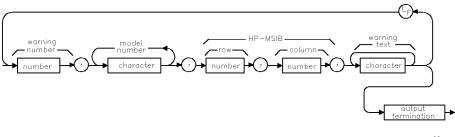
Example	100	OUTPUT 723; "SNGLS; TS; "	$Activate \ single-sweep \ mode.$
			$Sweep\ trace\ A.$
	110	OUTPUT 723; "XCH TRA[1,400], TRA[401,800];"	Exchange the amplitudes of
			the first 400 elements of trace
			A with the last 400 elements.
	120	OUTPUT 723; "VIEW TRA;"	$View\ trace\ A.$

Description The XCH command exchanges the contents of sources 1 and 2. If either of the sources is trace A, B, or C, the trace conditions are updated accordingly.

XERR

Return error information.

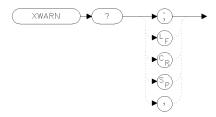
XXERR


Exampl	e
--------	---

140	ALLOCATE Error\$[200]	
150	OUTPUT 723;"JKLD;"	Send the spectrum analyzer a meaningless command.
160	OUTPUT 723;"VB -2NM;"	Attempt to set the spectrum analyzer to an unavailable video bandwidth.
170	OUTPUT 723; "CLRW;"	$Send\ the\ spectrum\ analyzer\ illegal\ syntax.$
180	OUTPUT 723;"WAIT 2S;"	$Wait\ 2\ seconds.$
190	OUTPUT 723; "XERR?;"	Query reported errors to computer.
200	ENTER 723 USING "-K"; Error\$	Store error messages in string variable, accepting line feeds.
210	PRINT Error\$	Print error report on computer.

Description The XERR command gives error information when an instrument in a system encounters an error.

Information queried includes the name and HP-MSIB address of the module reporting the error, the error code, and a description. IP clears errors from register.


Query Response

cgz_x02q

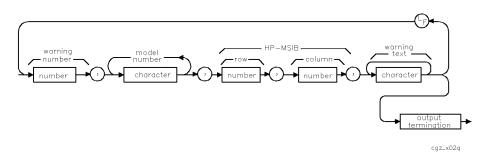
XWARN

Return an extended listing of all reported warnings.

xwarnx

```
100 OUTPUT 723;";"
100 OUTPUT 723; "XWARN?;"
```

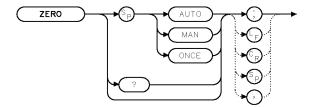
Description If no warnings have been displayed, the default value of 10000 is returned. Bit 5 of the status byte is used to report the presence of a warning Refer to STB and related commands for other information concerning the status byte. The following list shows the possible error messages. Of course, user-defined error messages are not included. For more information on the error messages, refer to Chapter 4 of the HP 71450B/1B/2B Optical Spectrum Analyzer Reference.


> Error 10000: Default - No warning displayed. Error 16001: Simulated hardware Error 16002: Trace length changed (due to ADC switch) Error 16003: Usable RBW limited Error 16004: Usable VBW limited Error 16005: Sweep too fast Error 16006: No current state 0

Error 16007: Possible compression Error 16008: No autoalign data (OSA)

Error 16009: RBW too wide for PP (currently unused)

Error 16010: RBW too wide for PC Error 16011: Span too large (OSA) Error 16012: PSDAC adjust past RL


Query Response

See Also STB, USERWARN, WARN?, WARNCTRL, XWARN

ZERO

Enable automatic zeroing of photo-diode's dark current.

